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Abstract: In this work a numerical finite element framework is implemented to enable the integration 

of coupled multiscale and multiphysics transport processes. A User Element subroutine (UEL) in Abaqus 
is used to simultaneously solve stress equilibrium, heat conduction, and multiple diffusion equations for 2D 
and 3D linear and quadratic elements. Transport processes in concrete structures and their degradation 
mechanisms are presented along with the discretization of the governing equations. The multiphysics 
modeling framework is theoretically extended to the linear elastic fracture mechanics (LEFM) by 
introducing the eXtended Finite Element Method (XFEM) and based on the XFEM user element 
implementation of Giner et al. [2009]. A damage model that takes into account the damage contribution 
from the different degradation mechanisms is theoretically developed. The total contribution of damage is 
forwarded to a Multi-Stage Fatigue (MSF) model to enable the assessment of the fatigue life and the 
deterioration of reinforced concrete structures in a nuclear power plant. Finally, two examples are presented 
to illustrate the developed multiphysics user element implementation and the XFEM implementation of 
Giner et al. [2009]. 
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Summary 

 
 This report documents the development of a modeling platform for the multiscale concrete modeling 
of aging degradation with application to concrete structures in Nuclear Power Plants (NPP). The modeling 
methodology was developed to incorporate the synergistic effects of coupling multiple transport 
phenomena in concrete. For this purpose, the complex system of nonlinear equations describing the 
different multiscale thermo-chemo-physical/mechanics in concrete were solved simultaneously and the 
discretized equations were implemented into a single user element subroutine UEL in the finite element 
code Abaqus. The multiphysics modeling was also presented within the eXtended Finite Element Method 
XFEM theory, which can be integrated in the user element implementation by introducing enrichment 
functions for strong and weak discontinuities. Degradation of concrete was evaluated through the 
deterioration of Young’s modulus using a total damage variable, which is the additive sum of several 
damage variables related to the different transport processes. The durability model is based on a Multi-
Stage Fatigue (MSF) model and is based on the total damage variable that affect the mechanical properties 
of concrete. The MSF model was used as a post-processing within Abaqus.  This modeling methodology is 
aimed at helping engineers to integrate multiscale and multiphysics models in the software Abaqus or any 
other finite element code. Moreover, it should help engineers to obtain a better understanding of the 
different transport processes that occur during the aging degradation and deterioration mechanisms of the 
performance of nuclear safety-related concrete structures under the exposure to the environment (e.g., 
temperature, moisture, radiation, cyclic loadings, etc.). 

The implemented formulation is able to solve for displacements, temperature, and a number of 
concentration variables simultaneously. To simultaneously solve the complex system of nonlinear 
equations describing the different multiscale chemo-physical/mechanics, the governing equations for the 
stress equilibrium, heat conduction, and multiple diffusion equations and their associated discretization 
must be implemented using the finite element method. The coupled chemo-thermomechanical process is 
governed by the following set of equations. 

 Stress equilibrium (Principle of Virtual Work): 

સ் ൉ ો ൅ ܎ ൌ ૙ 

 Heat conduction (Fourier’s law): 

ߩܥ
݀ଶܶ
ଶݐ݀

൅ ்ݍߘ ൅ ݎ ൌ 0									with						்ݍ ൌ െ݇ܶߘ 

 Diffusions (Fick’s law): 

߲ܿ௞
ݐ߲

൅ ௖௞ݍߘ െ ௖௞ݏ ൌ 0									with						ݍ௖ ൌ െܦ௞ܿߘ௞							ሺ݇ ൌ 1, ݊ሻ 

where the displacements ܝ, the temperature ߠ and the concentration ܿ of the diffusing species are the 
degrees of freedom. The term ࣌ is stress tensor, and ܎ the body forces. For the head conduction, ܶ  represents 
the temperature, ݇ the thermal conductivity, ܥ is the specific heat, ߩ the dendity, ்ݍ the heat flux, and ݎ 
external sources or sinks. In the kth diffusion equation ሺ݇ ൌ 1, ݊ሻ, ܿ௞ is the concentration variable, ܦ௞ the 
diffusivity, ݍ௖௞ the diffusion flux, and ݏ௖௞ the diffusion source or sink term.  

To solve the above differential equations, the following initial and boundary conditions must be taken 
into account: 

Mechanical 

 Prescribed displacements: ܝ ൌ ,ܠሺܝ  ;ሻ on ܵ௨ݐ
 Pressure: ݌ ൌ ,ܠሺ݌   ;ሻ on ܵ௣ݐ
 Volumetric forces ܎ in ܸ, such as gravity;  
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Thermal 

 Prescribed temperatures: ߠ ൌ ,ܠሺߠ  ;ሻ on ܵఏݐ
 Surface heat flux: ݍఏ ൌ ,ܠఏሺݍ   ;ሻ on ܵఏݐ
 Volumetric heat flux ݎఏ ൌ ,ܠఏሺݎ  ሻ  in ܸ, such as the internal heat generated by cementݐ

hydration;  
 Surface heat convection: ݍ ൌ ݄ሺߠ െ ݄ ଴ሻ on ܵఏ whereߠ ൌ ݄ሺ࢞,  ሻ is the film coefficient andݐ

଴ߠ ൌ ,࢞଴ሺߠ  .ሻ is the sink temperatureݐ
 Heat radiation: ݍ ൌ ߠሾሺܣ െ ௭ሻସߠ െ ሺߠ଴ െ  ௭ߠ ௭ሻସሿ on ܵఏ where A is the radiation constant andߠ

is the value absolute zero on the temperature scale.  

Diffusional 

 Prescribed concentrations: ߶௞ ൌ ߶௞ሺܠ, ሻ on ܵథݐ
௞ with ݇ ൌ ሺ1, ݊ሻ; 

 Surface diffusion flux: ݍథ
௞ ൌ థݍ

௞ሺܠ, ሻ on ܵథݐ
௞ with ݇ ൌ ሺ1, ݊ሻ  

 Volumetric diffusion flux	ݎథ
௞ in ܸ with ݇ ൌ ሺ1, ݊ሻ; 

 Surface Diffusion convection: ݍథ
௞ ൌ ݄థ

௞ ሺ߶௞ െ ߶௞
଴ሻ on ܵథ

௞ where ݄థ
௞ ൌ ݄థ

௞ ሺ࢞,  ሻ is the filmݐ

coefficient and ߶௞
଴ ൌ ߶௞

଴ሺ࢞, ݇ ሻ is the sink concentration, withݐ ൌ ሺ1, ݊ሻ. 
 Diffusion radiation:ݍథ

௞ ൌ థܣ
௞ ൣሺ߶௞ െ ߶௞

௭ሻସ െ ሺ߶௞
଴ െ ߶௞

௭ሻସ൧ on ܵథ
௞ where ܣథ

௞  is the radiation 
constant and ߶௞

௭ is the value absolute zero on the kth concentration scale, with ݇ ൌ ሺ1, ݊ሻ. 

The implementation for multiphysics and multiscale modeling was performed on eight different two- and 
three dimensional elements (triangular, quadrilateral, tetrahedral and brick), both linear and quadratic 
elements. 

 

 
Figure 5 – Type of elements implemented in the user element subroutine. 

 
 The discretization of the mechanical, thermal, and diffusional equations are fully described in the 
Appendix A along with the implementation in the user element in Appendix B. 

The XFEM method was theoretically extended to the coupling of mechanical, heat conduction, and 
diffusion equations in order to mesh inclusions and predict crack propagation in heterogeneous concrete 
materials. Within the XFEM technique, the temperature ܶ௛ሺݔሻ and concentrations variables ܿ௞

௛ሺݔሻ need 

3 noded triangle 6 noded triangle 4 noded quadrilateral 8 noded quadrilateral

4 noded tetrahedron 10 noded tetrahedron 8 noded brick 20 noded brick
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also to be enriched with Heaviside and crack tip asymptotic functions, respectively ܪሺݔሻ and ܨఈሺݔሻ, in 
elements crossed by the crack path, as well as in blended elements (elements that are not crossed by crack 
paths but are composed of enriched nodes). The nodal enrichment is performed in a similar way to that of 
the displacement variables ݑ௛ሺݔሻ: 
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 The durability model is based on the damage degradation of material properties of concrete. Using 
continuum damage mechanics (CDM), the damage is inserted in the model as an internal state variable 
(ISV) that deteriorates the mechanical properties of concrete. The damage evolution is characterized by the 
rate at which material damage is accumulated from the different degradation mechanisms that occurs at the 
microscopic level. The material damage in the concrete structure leads to the following degradation of 
material stiffness: 

E ൌ E଴ሺ1 െ Dሻ,																																																																								ሺ8ሻ 

where ܧ଴ is the material stiffness of the undamaged concrete structure. The damage variable ܦ is defined 
by assuming that the nuclear radiation can generate a specific damage process, ܦ௥, in addition to the 
mechanical, ܦ௠, and thermo-mechanical ones, ܦ௧௖: 

D ൌ 1 െ ሺ1 െ ௠ሻሺ1ܦ െ ௧௖ሻሺ1ܦ െ  ሺ9ሻ																																																	௥ሻܦ

 To assess the aging degradation of concrete, a Multi-Stage Fatigue (MSF) model was used based on 
the deterioration of mechanical properties of concrete related to the total damage value. The microstructure-
based MSF model incorporates different microstructural discontinuities effect (pores, inclusions, etc.) on 
physical damage progression. This model partitions the fatigue life into three stages based on the fatigue 
damage formation and propagation mechanisms: 

- crack incubation (INC), 
- microstructurally small crack (MSC) and physically small crack (PSC) growth, and 
- long crack (LC) growth. 

The total fatigue life is decomposed into the cumulative number of cycles spent in several consecutive 
stages as follows: 

்ܰ௢௧௔௟ ൌ ூܰே஼ ൅ ܰெௌ஼ ൅ ௅ܰ஼. 

 

 Finally, for the duration of this NEUP project, technology transfer to the NEUP sponsors was 
maintained through publication of technical reports. As deliverables, several files are provided with the 
final report:: 

 Multiphysics Abaqus UEL user element subroutine Uel-Neup.f: a Fortran subroutine to solve 
multiphysics analysis for concrete structures (mechanical, thermal and diffusional). The 
subroutine internally calls a user material subroutine UMAT that can define the deterioration of 
mechanical properties. 

 Abaqus input files for 8 different user elements to be used in conjunction with the user element 
subroutine uel-neup.f; 
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 XFEM Abaqus UEL user element subroutine Uel-xfem.f: a Fortran subroutine to solve XFEM 
analysis [developed by Giner et al., 2009], which was translated from Spanish to English. 

 Abaqus input files for running a cracked finite strip loaded under uniform normal stress in 
conjunction with the user element subroutine uel-xfem.f; 

 Multi-Stage Fatigue Abaqus UVARM user subroutine Msf.f: a Fortran subroutine that evaluates 
the fatigue life of concrete at the end of each increment. 

 The multiphysics Abaqus UEL user element subroutine constitutes the main result of this work. This 
user element subroutine constitutes a multiscale and multiphysics platform in which several transport 
processes can be integrated by defining their material constants and solved simultaneously along with 
mechanical and thermal analysis. More advanced transport process models require a little further 
development in terms of implementation. This UEL subroutine is still limited to standard elements and is 
therefore unable to perform XFEM analysis in its current state. However, in the case of modeling strong 
and weak discontinuities within concrete structures, the XFEM theory requires a partitioning of the cut 
elements into subelements for integration purposes. Therefore, the current user element implementation can 
be called for each of these subelements, and by incorporating additional enrichment functions to the current 
approximation, the extension to the XFEM capability is straightforward. 
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1. Introduction 

Extensive research and studies have been carried out to determine the durability of concrete and 
quantify the effects of age-related degradation on the performance of nuclear power plant (NPP) safety-
related structures under various service conditions [Naus, 2007, 2009; Maekawa et al., 2003, 2009]. Thus, 
the background information and data on the progressive changes in the physical and chemical nature of 
concrete under the exposure of the environment (i.e., elevated temperature, moisture, corrosion, irradiation, 
cyclic loadings, etc.) is available and very detailed in the literature [Maekawa, 2009; Naus, 2009; Bejaoui, 
2007, Gawin et al., 2006; Fillmore, 2004]. The existing studies describe the mutual linkage of chemo-
physics and mechanistic events which develop over the representative volume element (RVE) of different 
scales and, are used to simulate the macroscopic behaviors of structural concrete under combined external 
loads and ambient conditions. 

There are currently 99 nuclear power plants (NPPs) in the United States, collectively which provided 
approximately 20% of the nation’s electricity [Naus et al., 2008]. The low cost, mechanical properties, and 
high water content of reinforced concrete make it a suitable building material for use in a variety of 
structures found in NPPs, most notably in the construction of reactor containment units. As many of the 
terms of licensure for operation of these NPPs must soon be renewed, the conditional assessment of the 
concrete structures within is increasingly important. However, many current experimental techniques used 
in the conditional assessment of concrete are either insufficient with regards to their ability to provide 
predictive information with respect to service life, or are destructive in nature, and therefore of limited 
utility. Taking this into account, the development of an integrated computational modeling scheme for use 
in predicting the long term behavior of reinforced concrete is seen as highly desirable. 

In the past decades, considerable research and modeling efforts have been put into the improvement of 
the durability of concrete structures by developed countries, such as United States, Canada, Japan, and 
several European countries. This has resulted in a characterization and reasonable understanding of the 
main degradation processes, and an acquired experience in establishing measures to prevent these 
degradation processes. The results of these efforts can be found in the present literature, concrete codes and 
manuals on durability design. Many fundamental efforts that have been published on modeling aging 
degradation and assessing the effect of deterioration mechanisms of the performance of nuclear safety-
related concrete structures under the exposure to the environment (e.g., temperature, moisture, radiation, 
cyclic loadings, etc.). The synthesis of these investigations on concrete and reinforcement degradation and 
general guidelines for probabilistic durability design were published in the literature. Several models and 
software codes that were developed to predict the durability of concrete structures have been developed for 
evaluating aging degradation of concretes. Some of the software codes and their descriptions are listed as 
follows: 

 DuCOM (the acronym for Durability of COncrete Model): It is a Finite-Element-based computational 
program which has been developed in the concrete laboratory at the University of Tokyo since 1990 to 
evaluate various durability aspects of concrete [Maekawa et al., 1999]. The current full version traces the 
development of concrete hardening (hydration), pore structure formation, transport and equilibrium of 
vapor and liquid condensed water in the pores, and several associated nonlinear mechanical behaviors, 
such as autogenous/drying shrinkage, stress generation, and cracking, from casting of concrete for a 
period of several months or even years. The program can be utilized to study the effect of ingredient 
materials and environmental conditions, as well as the size and shape of the structure on the durability of 
concrete; it can be used to analytically trace the evolution of the microstructure, strength and temperature 
in time for arbitrary initial and boundary conditions [Maekawa et al., 2003, 2009]. 
 DuraCrete (European durability concept of concrete): In this Brite-EuRam project, the durability design 
has been developed into a service life design based on performances and on reliability for reinforced 
concrete structures. The software offers the possibility to present the design on the same level as the 
structural design that has also been based on performances and reliability. The structural and service life 
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design can even be integrated. The "DuraCrete" approach offers good opportunities for the service life 
design of other structural materials and building materials. 
 Life-365 is a computer program for predicting the service life and life-cycle costs of reinforced concrete 
exposed to chlorides. It follows a methodology created by the American Concrete Institute (ACI) strategic 
development council consortsium I and II groups of companies that gives research-based estimates of the 
effects of concrete design, chloride exposure, environmental temperature, concrete mixes and barriers, 
and steel types on this service life and life-cycle cost. 
 DuraNET: Network for supporting the development and application of performance based durability 
design and assessment of concrete structures. It is an international engineering professional network 
which aims to promote the adoption and wider use of a performance and reliability based service life 
design approach for reinforced concrete structures. This European Union funded network brings together 
19 partners from across Europe who are committed to improving the durability design, assessment and 
repair of concrete structures in Europe. The network aims to promote the use of service life design of 
concrete structures based on a probabilistic design method. 
 Hypercon: Prediction and Optimization of Concrete Performance research program from BFRL 
(Building and Fire Research Laboratory, NIST) to develop and implement the enabling measurement 
science that gives the concrete industry and state and federal government agencies the predictive 
capability upon which they can base the use of performance-based standards and specifications in key 
technical areas [Snyder and Bentz, 2009]. The Hypercon program offers freely available software to the 
general public such as CIKS (Computer Integrated Knowledge System for High Performance Concrete 
that addresses the service life prediction of steel-reinforced concrete exposed to chloride ions), 
CEMHYD3D (3D cement hydration and microstructure development modeling package), HCSSMODEL 
(3D concrete microstructure modeling package, etc. 

The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive 
materials has made its performance crucial for the safe operation of the facility. This concrete is exposed 
to several conditions that have been shown to cause the concrete to deteriorate. These conditions include: 
freeze/thaw, heat, cracking, acids, chlorides, sulfates, carbonation, calcium leaching, and radiation. These 
conditions are compounded by the aging of these concrete structures [Fillmore, 2004]. It is therefore 
primordial to accurately characterize and model the mechanisms responsible for degradation of reinforced 
concrete structures to obtain a good prediction of the durability of reinforced concrete structures. 

A numerical multiscale modeling scheme similar to that of Maekawa et al. [2003, 2009] shown on 
Figure 1, should include a frame of structural mechanics that has an inter-link with thermo-hydro physics 
in terms of mechanical performances of materials through the constitutive modeling in both space and time, 
and described as following: 

 Cement heat hydration and thermal conduction: The reaction of water with cement is exothermic and 
generates a considerable amount of heat over an extended period of time. Water content, density, and 
temperature significantly influence the thermal conductivity of a specific concrete. 
 Pore structure formation model of cement paste: Computational modeling of varying micro-pore 
structures of hardening cement paste media is a central issue of multiscale analysis. Moisture migration 
and durability related substances (in this study, calcium, chloride, dissolved CO2 and O2 are treated) and 
diffusion of gaseous phases are greatly governed by micro-pore structures. 
 Moisture equilibrium and transport (including frost): Moisture mass balance must be strictly solved in 
both vapor and condensed water. The conservation equation is expressed with capacity, conductivity and 
sink terms on the referential volume. Pore pressure of condensed water is selected as a chief variable so 
that both saturated and unsaturated states can be covered with perfect consistency. Another key issue here 
is that material characteristic parameters are variable with respect to micro-pore development. 
 Free/bound chloride equilibrium and chloride ion transport: Chloride transport in cementitious 
materials under usual conditions is an advective-diffusive phenomenon. In modeling, the advective 
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transport due to bulk movement of pore solution phase is considered, as well as ionic diffusion due to 
concentration gradients. 
 Carbonation and dissolved carbon dioxide migration: For simulating carbonation in concrete, 
equilibrium of gaseous and dissolved carbon dioxide, their transport, ionic equilibriums and carbonation 
reaction process are formulated on the basis of thermodynamics and chemical equilibrium theory. 
 Corrosion of steel and dissolved oxygen transport: In this section, a general scheme of a micro-cell 
corrosion model is introduced based on thermodynamic electro-chemistry. Corrosion is assumed to occur 
uniformly over the surface areas of reinforcing bars in a  

 
Figure 1 – Multiscale modeling scheme and aging degradation simulation 

for reinforced concrete structures [Maekawa et al., 2003 & 2009]. 
 

referential finite volume, whereas formation of pits due to localized attack of chlorides and corrosion 
with macro cell remains for future study. 
 Calcium ion leaching and transport: Calcium is one of the main chemicals and in pore solution, Ca2+ 
is equilibrated with Ca(OH)2 solids and other ionic substances. Calcium leaching may change pore 
structures due to lost Ca(OH)2 and long-term performance of cementitious solids would be influenced 
especially when exposed to pure water. 
 Chrome dissolution and migration: In the same manner as calcium ion leaching and transport, chrome 
dissolution can be incorporated in the multiscale platform, too. 
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 Macro-damage and crack evolution and momentum conservation: For simulating structural  behaviors 
expressed by displacement, deformation, stresses and macro-defects of materials in view of continuum 
plasticity, fracturing and cracking, well established continuum mechanics are available in the multiscale 
modeling theory. Compatibility condition, equilibrium and constitutive modeling of material mechanics 
are the basis and spatial averaging of overall defects in control volume of mesoscale finite element is 
incorporated into the constitutive model of quasi continuum. In a 3D finite element computer code of 
nonlinear structural dynamics, the size of a referential volume is in the order of 10-3~10-1m. 
 Creep and cyclic loading: Two important aspects of durability of fastening elements in concrete and 
reinforced structures are the effect of repeated loading and the interaction between concrete cracking and 
deformation that occurs while concrete is under sustained stress (creep of concrete). Cyclic variations of 
environmental relative humidity have an appreciable effect on the long time deformations of concrete 
structures. 

 The events listed above are not independent but mutually interlinked with each other. A complex figure 
of interaction can mathematically be expressed in terms of state parameters commonly shared by each 
event. For example, Kelvin temperature and pore water pressure can be seen in the modeling of cement 
hydration rate, moisture equilibrium, constitutive law of hardened cement paste, conductivity of carbon 
dioxide, bound and free chloride equilibrium, etc. Each of these mechanisms are individually modeled with 
different geometrical scales of representative volume element (RVE) within a used-defined material 
subroutine. 

Various damage mechanisms and durability issues lead to very complex fracture behavior inside 
heterogeneous materials, such as concrete. Therefore, the prediction of crack propagation and fracture 
resistance can help design durable concrete materials to avoid the excessive damage [Ng and Dai, 2011]. 
Concrete materials are characterized by random, complex and heterogeneous microstructures, which 
include the very irregular aggregates, matrix, air voids, and interfacial adhesion zones. The crack evolutions 
are affected largely by their detailed microstructures. In the past, several numerical approaches have been 
developed to predict the crack propagation in such materials. Among these numerical approaches, cohesive 
zone modeling has been of the most used fracture modeling over the past decades. However, this fracture 
modeling techniques, like other conventional finite element based methods, requires that the mesh conforms 
to the geometric discontinuities. The only possibility to accurately model these geometric discontinuities is 
to conform the finite element mesh to the line of discontinuity. The eXtended Finite Element Method 
(XFEM), initially proposed by Belytschko and Black [1999] and Moës et al. [1999], has been developed to 
arbitrarily handle strong (cracks) and weak discontinuities (material interfaces). XFEM is based on the local 
extrinsic partition of unity enrichment which was initially used to model strong discontinuities, i.e. cracks, 
in meshless methods [Rabczuk and Wall, 2006]. 

Numerical analyses of structures made of quasi-brittle materials, such as concrete, require robust 
models for the opening and propagation of cracks, which represent the discontinuous character of the 
fracture process and adequately consider cohesive forces acting within the fracture process zone. During 
the last decade, approaches that allow for the representation of cracks as embedded discontinuities within 
the structure independent of its discretization have been developed. These formulations can be categorized 
into element-based formulations, generally denoted Embedded Crack Models and nodal-based 
formulations, such as the Extended Finite Element Method (XFEM). Cracking in quasi-brittle materials, 
such as concrete, is characterized by the formation of microcracks which eventually coalesce and form 
propagating macrocracks. The realistic modeling of these processes of crack opening and propagation is a 
prerequisite for reliable prognoses of the safety and the durability of reinforced concrete structures. In these 
approaches, the correct prediction of the direction of new crack segments is crucial for the reliability, as 
well as for the robustness of the numerical analysis. 

 Therefore, it is primordial to accurately and efficiently develop robust multiscale continuum damage 
models of mechanisms that capture the degradation at different length scales and their mutual effects on 
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initiation and propagation of microcracks and macrocracks, in order to establish a direct relationship with 
the durability of concrete structures of NPP. 

This report describes the development a modeling platform to solve multiscale and multiphysics 
equations for aging degradation of concrete structures in nuclear power plants (NPP) and to validate the 
models with experimental data from the literature. Numerical solution procedures for coupled chemo-
mechanical simulations of concrete structures subjected to aggressive substances and mechanical damage 
are presented within user elements and into a finite element code. 

 
2. Mass Transport Processes in Concrete 
 
2.a.  Concrete: Material Overview 

Concrete has a long and well documented history of use. In spite of this, a comprehensive understanding 
of all of the processes at work in concrete, especially steel reinforced concrete remains has remained elusive 
until recently. The recent characterization of chemical and mechanical properties of the cement binder of 
commonly used Portland cement was provided in the works of Bonaccorsi et al. [2005], Richardson [2008] 
as well as Pellenq et al.[2008], has provided a means by which cement, and therefore concrete, may be 
understood at micro- and nano-scales. This, when combined with the techniques and methods of quantum, 
continuum,  fluid, and fracture mechanics, and thermodynamics provide a means by which one may 
simulate the combined processes at work within the “living” material of concrete. While it is true that 
simulations have been used in the past to provide some insight into these processes, particularly heat, 
moisture, and chemical movement within a concrete system, most of these simulations have been limited 
in their scope to describing only one or a few of these processes at a time. In a material such as concrete, 
whose chemical composition and mechanical properties are ever changing and tightly coupled, this can 
hardly be considered adequate. This taken into consideration alongside the fact that, many times, current 
service life assessment techniques are either destructive or limited in their applicability, the need for 
simulations capable of describing all of the complex interactions taking place within a concrete structure 
becomes apparent. To this end, what follows is a brief description of the theory behind these processes. 
 
Macro/Continuum Scale 
 At the continuum scale we are able to identify the various phases that make up reinforced concrete in 
its entirety. The solid phase aggregate, cement binder, and steel reinforcement are easily identified by casual 
inspection. However, less immediately obvious is the liquid and gaseous phases contained within the pore 
matrix of the cement binder. Furthermore, depending upon the age and exposure to aggressive chemical 
species like CO2 and various chlorides, additional solid phases must be considered as cement binder is 
carbonated and general corrosion oxide buildup accrues on the interfacial area between the binder and 
reinforcement.  
 At this length scale, the use of continuum mechanics in treating stresses, quantity of energy, entropy, 
and quantity of the various phases as scalar, vector, or tensor quantities is prevalent in numerous concrete 
behavior models. This allows for the use of differential and integral calculus in describing said behavior, 
and in doing so gives one access to the methods and balance laws of continuum mechanics. As we are 
concerned with the transport of mass and energy within the given concrete system, we are particularly 
interested in the balance laws corresponding to these phenomena, of which the general form for a given 
quantity of interest A is as follows: 

߲
ݐ߲
࢛ ൅ ߘ ∙ ሺ࢜ሬሬԦܿߩሻ െ ሻܿߘߩܦሺߘ െ ࢙ ൌ 0.																																																				ሺ1ሻ 

On the domain of interest, ࢛ is the scalar potential function for A at a given point, ࢜ሬሬԦ is the vector function 
describing convective flow across an infinitesimally small surface of the domain of A, ߩ is the scalar density 
function of A, ܿ is the scalar concentration function of A, ࢙ is the scalar sink function for a given point 
[Kuzmin, 2010]. In the case of entropy balance, we change the state of equality, “=”, to one of inequality, 



LWS-2  Final Report 
    

 

12 

“൒”, as is consistent with the Clausius-Duhem inequality. The general form beyond this small but important 
consideration, however, remains unchanged.  
 Additionally, in order to couple transport processes with mechanical deformations, we must also 
consider the use of the balance laws of momentum, be they linear or angular, in accordance with the specific 
geometry of the domain. These balance laws, while powerful, are useful only if we have enough constitutive 
equations to properly constrain the resulting system of equations. Each concrete model has its own set of 
constitutive equations, many of which depend upon the characteristics of the concrete structure at a sub-
continuum level. For this section, though, it must be noted that accurate simulations of reinforced concrete 
as a whole are predicated on a comprehensive treatment of each phase not only in a vacuum, but also in the 
context of their combination. However, the complexity and somewhat random distribution of some of these 
phases throughout the reinforced concrete body, in particular, the aggregate and the fluid content of the 
pore structure, make the specific treatment of each instance of these phases difficult if not impossible at the 
continuum length scale alone. Additionally, many models used to describe transport phenomena in concrete 
at the continuum level were of a general form for use in a variety of porous media in building and soil 
physics. As Cerny and Ravnanikova [2002] point out, many of these models were adapted by the inclusion 
of sink/source terms in the general transport PDE for use in concrete modeling. As a consequence, until 
recently, this has resulted in a number of models that were limited in their applicability due to having been 
developed without fully considering the effects of both the pore structure and the inclusion of aggregates 
on the thermodynamic, mechanical, and chemical processes of reinforced concrete. Furthermore, a number 
of these models failed to address the synergistic effects of coupling multiple transport phenomena. For 
instance, the Fickian diffusion based models for chloride transport in concrete of Tuutti [1982], Funahashi 
[1990], Cady and Weyers [1992], Zemajtis et al. [1998], and Costa and Appleton [1999] all neglected the 
affect that moisture transport would have on the ingress of chlorides [Cerny and Ravnanikova, 2002]. Even 
when the effects of coupling multiple phenomena were explored, as in the work of Majorana et al. [1998], 
which was itself based off of the works of Bazant and Najjar [1972], and Bazant and Thonguthai [1979], 
the effects of aggregates were still not included in the model. 

 In order to account for the effects of aggregates, a number of approaches in modeling the material 
behavior of the aggregates, steel, and voids suspended in the cement matrix at lower length scales have 
been and are being taken, with results being “fed upwards” into coefficients included in the system of 
coupled PDEs at the continuum level. In effect, this smears or averages out the thermodynamic, mechanical, 
and chemical properties of the phases across the material continuum, thereby addressing the discontinuities 
inherent in their inclusion. A notable example of this kind of approach is found in Maekawa’s [2009] multi-
scale model of concrete, in which the idealized pore volume and pore surface area are modeled as 
statistically stored variables across a given representative volume element (RVE) at lower length scales, 
and whose thermal, chemical, and mechanical behavior is averaged across said element. A more recent 
trend has been to try and capture the geometry of a concrete RVE containing aggregates, voids, and pores 
with discretization methods like Asahina and Bolander’s Voronoi tessellation [2011], Rashid’s use of the 
polyhedral element method (PEM) [Rashid and Sadri, 2012], and, of course, the employment of extended 
finite element method (XFEM) by various authors. The use of these techniques is further detailed in the 
following section dealing with the mesoscale characteristics of reinforced concrete. 
 
Mesoscale 
 Of particular importance in simulating the movement of both chemical species and energy within a 
reinforced concrete system is the quantification of its porous nature. This quantification also aids in helping 
to simulate the behavior of crack propagation within the very same system. The complex capillary pore 
network encountered at the mesoscale contains pores that typically have a radius in the range of magnitude 
of 10-6m to 10-3m. Many models seek to characterize the porous nature of concrete at this scale by 
developing a pore distribution curve, f(r), which when integrated over the domain of all possible pore radii, 
ܴ௠௜௡ to ܴ௠௔௫, yields the following equation: 
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න ݂ሺݎሻ݀ݎ ൌ 1
ோ೘ೌೣ

ோ೘೔೙

.																																																																											ሺ2ሻ 

 This pore distribution is used in the definition of permeability, K, and hydraulic conductivity, k, 
which are defined as 

ሺܴሻܭ ൌ
1
8
߬න ݎሻ݀ݎଶ݂ሺݎ

ோ

ோ೘೔೙

																																																																					ሺ3ሻ 

and 

݇ሺܴሻ ൌ
݃ߩ
ߟ8

߬න ݎሻ݀ݎଶ݂ሺݎ
ோ

ோ೘೔೙

																																																																		ሺ4ሻ 

respectively. In this, ߬ is the effect of tortuosity, and exists on the interval 0< ߬ < 1. ߩ is the density of the 
fluid being conducted, g represents the acceleration of the fluid due to gravity, and ߟ is the dynamic 
viscosity of the same fluid. 
 Moisture content by volume across a given domain of radii may be found by multiplying the integral 
across said domain by the saturated moisture content of the system, 

ሺܴሻݓ ൌ ௦௔௧ݓ න ݂ሺݎሻ݀ݎ
ோ೘ೌೣ

ோ೘೔೙

																																																															 ሺ5ሻ 

 Lastly, we may use the distribution function to calculate the relative moisture diffusivity as follows: 

ሻݓ௥ሺߢ ൌ ൬
ݓ
௦௔௧ݓ

൰
௡ ܴ௠௔௫ଶ ݂ሺܴ୫ୟ୶ሻ

ܴଶ݂ሺܴሻ

׬ ݎሻ݀ݎଶ݂ሺݎ
ோ
ோ೘೔೙

׬ ݎሻ݀ݎଶ݂ሺݎ
ோ೘ೌೣ
ோ೘೔೙

.																																						ሺ6ሻ 

It is important to realize that in looking for ߢ௥,௠௔௫, we are holding ܴ equal to ܴ௠௔௫. This implies that w is 
equal to ݓ௦௔௧ and, therefore, ߢ becomes a constant. Since this cannot happen in theory, the moisture gradient 
cannot be chosen as the driving force of the transport process. For this, a different thermodynamic force 
must be selected, as was the case when Maekawa et al. [2009] selected the pressure gradient. 
 By assuming that pore formation does not take place in the hydration of the inner core of a reacting 
grain and that the porosity at position x in a CSH grain varied linearly with the radius, Maekawa et al. 
[2009] was able to define a relation between position and porosity of the form 

߮ሺݔሻ ൌ
ݎ

ܦ ൅ ݎ
																																																																									ሺ7ሻ 

where ߮ is the porosity, and D is the size of a given CSH grain. Multiplying this term by the appropriate 
area dimensions and integrating over the domain of the system yields the total volume within the concrete 
body occupied by pore space: 

௫ܸ ൌ න ߮ሺݔሻ4ߨሺݔ ൅ ݔ଴ሻଶ݀ݔ
௫

଴
.																																																									ሺ8ሻ 

This value may then be used to calculate the void volume fraction of a representative volume element at 
this scale. This value contributes in the simulation of crack propagation in the cement matrix. 
 It is important to note that all of these relations are effectively smearing the behavior of the complex 
geometry of the pore structure across an RVE. Furthermore, none of them reference the inclusion of 
aggregates in the calculations. Recently, many have sought to simulate the effect that such inclusions would 
have on the behavior of concrete through the use of numerical techniques similar to Finite Element Method 
(FEM). Rashid and Sadri [2012] make use of Polyhedral Element Method (PEM) to discretize the geometry 
of the RVE. PEM, though perhaps more computationally demanding depending on the problem size, may 
be viewed as preferable to standard FEM in that it produces a significantly smaller error in meshing concave 
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geometries. This is possible because the each element in the mesh is further divided into sub-cells, and the 
shape function defined across the entire element is defined only at specific points within these cells. In this 
way, PEM is not dependent on the continuity of the whole element. Asahina and Bolander [2011] were able 
to use Voronoi-based discretization to represent multiple particles of complex geometries suspended in a 
matrix.  
 
Micro-scale 
 During the process of hydration, contacting water and grains of calcium silicates like alite (C3S) and 
belite (C2S) react to form calcium silicate hydrates (CSH). At higher length scales, the CSH appears 
amorphous to the point where it is often referred to as a gel. Closer inspection on the length scale of up to 
500nm reveals CSH to be somewhat structured. While hydration that takes place on the interior of a 
hydrating grain may indeed be considered amorphous, the hydration that takes place on the surface of said 
grain exhibits a more regular structure (Figure 2). 

 
Figure 2 – TEM micrograph showing the inner and outer products of hydrating C3S. Note the contrast 

between the amorphous inner product and the semi-ordered outer product [Pellenq et al., 2008]. 

 As hydration occurs on the surface, CSH particles that form from the reaction between silicates 
dissolved into the reacting water begin to flocculate, and deposited on the surface of aggregates, and other, 
larger hydrating CSH grains. These particles are composed of stacks of tens to hundreds of CSH lamella, 
the specific dimensions of which are functions of Ca:S ratio of the mixture and the amount space in which 
these lamella have to grow. The lamella do not grow indefinitely though, as they exhibit a tendency towards 
disorder at long range. The orientations of the lamella are far from uniform, thereby accounting for the 
apparent isotropy at longer ranges. 
 Pellenq et al. [2008] were able to determine using ab initio calculations, energy minimization 
techniques, and molecular dynamics to show that CSH is essentially a lacunar ion-covalent continuum at 
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this length scale, whose stiffness is due, in large part, to the short range electrostatic forces at the contact 
points between lamellar stacks. 
Nano-scale 
 Models dealing with the crystal structure of CSH lamella typically fall into one of two categories, those 
based on a monomeric structure of silicate chains, and those based on dimeric or polymeric structures 
similar to those seen in tobermorite and referred to as dreierkette models (Figure 3). The dreierkette models 
are generally preferred over the monomeric models as the latter are inconsistent with experimentally 
observed chemical structures. For this reason, the monomeric models will not be discussed further in this 
writing. 
 Determined by Bonaccorsi et al. [2005], the crystal structure of 1.4nm tobermorite is used as an 
approximation for the crystal structure of CSH lamella. In this model, two silicate chains sandwich a central 
sheet of Ca-O. The silicate chains are offset from each other by a factor of b/2, and there exists an interlayer 
space accommodating H2O molecules and Ca+ ions. Atomistic calculations including periodic ab initio 
calculations to determine thermodynamic constants, empirically determined potentials to calculate the 
cohesive energies, and molecular dynamics to determine the self-diffusivity coefficient were used by 
Pellenq et al. [2008]. 
 

 
Figure 3 -- Diagram of Dreierkatte structure of 1.4 nm tobermorite. [Richardson, 2008]. 

 
2.b.  The Hydration Process: CSH Formation Reaction 

The long term degradation of a concrete structure is based in no small part on the transport phenomena 
that take place within the structure in question. These transport phenomena are dependent upon the 
characteristics of the pore structure of the cement binder, which is, in turn, dependent on the hydration 
process of said binder. 

Powers [1958] provided a still widely regarded summary of this process and how it leads to the 
formation of the pore structure in cement. In his model, unhydrated grains of cement may be considered to 
be formed of silicates, aluminates, and aluminoferrites. The dominant reactants in unhydrated cement are 
tricalcium silicates (3CaO.SiO2), also known as alite, and dicalcium silicates (2CaO.SiO2), also known as 
belite. During the hydration process, these grains react with water and produce calcium silicate hydrates 
(CSH, 3CaO.2SiO2.3H2O) and calcium hydroxide (Ca(OH)2). CSH is plate-like in nature with straight 
edges and a length up to ten times its width, and CSH crystal chains are generally so small as to be regarded 
as a gel. The cross linking of fibrous sheets of CSH leads to the development of interstitial spaces or pores, 
with a diameter on the order of nanometers. The mean diameter observed is generally ranges from 0.001 
µm to 0.008 µm. These pores are generally not considered to be permeable with respect to aggressive 
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species. They are known as gel pores or micro pores. They occupy approximately 1/3 of the volume of the 
gel volume. Calcium hydroxide is more crystalline in structure. 

As the unhydrated silicates react with the water, the CSH grains grow, interlock, and bond both 
physically and chemically. It is this process that gives concrete its structural properties, since larger pores 
form at the boundaries of the CSH grains/clusters. These pores are known as capillary pores. They may be 
thought of as the voids left by water that has either reacted chemically with the unhydrated cement, or 
evaporated during the course of the reaction. Capillary pores are considerably larger than gel pores, though 
their precise dimensions are affected by water to cement ratio and the level of compaction in the hydrating 
mixture. 

Additionally, pockets of air may become trapped inside the gel during hydration, even though most of 
these pockets should be removed during the process of compaction. There are also voids left in the concrete 
by the aggregate, though, due either to compaction surrounding the aggregate or the impermeable nature of 
the aggregate itself, these voids do not generally contribute to permeability. 

Maekawa et al. [2009] take advantage of the fact that hydration is an exothermic process, and are able 
to characterize it based on this. In this model, the rate of hydration is taken to be a function of water to 
cement ratio, the accumulated heat of the hydrating body, and the chemical composition of the cement 
allowing for the inclusion of additives like fly ash, blast furnace slag, superplasticizers, and pozzolans. 
Maekawa also includes the presence of gypsum as a reactant in the makeup of unhydrated cement. This 
leads to an intermediate stage in the process where the aluminate and ferrite phases react with the gypsum 
to produce gypsum, which retards the hydration process until it is converted by newly formed calcium 
aluminate hydrates into monosulphates. 

All of these reactions occur simultaneously, though the reaction rates of each reactant are different. 
Over the course of the hydration process, the heat generation profile of different reactants comes to 
dominate the overall heat generation profile of the whole process as those constituents with faster rates of 
reactions exhaust themselves and slower reacting constituents take their place as the principle source of 
hydration. Thus, Maekawa et al. [2009] observed the overall level of hydration by noting the rate of heat 
generation of the body in question. This may be computed as the sum of the heat generation rates of the 
constituent parts of the cement mixture 

௖ܪ ൌ෍݌௜ܪ௜ .																																																																				ሺ9ሻ	 

Where Hc is the total heat rate for the cement compound, pi is the weight composition ratio for the ith 
component, and Hi is the heat generation rate for the ith component. 

Other hydration models exist, and they may largely be categorized as one of four different types. 
These are 
 Overall Kinetics – Hydration is described as a function of time. No explicit consideration is given to 

mechanisms and processes at particle level. 
 Particle Kinetics – Reactions at particle level are taken as the starting point. There is no interaction 

between particles, however. 
 Hybrid Kinetics – Particle size, distribution, and other factors (water/cement ratio, chemical 

composition, etc.) are considered explicitly. 
 Integrated Kinetics – The hydration process is considered as part of an overall model for development 

of material properties (example: DuCOM). 

 
2.c.  Phenomena at Work 
 In assessing the performance of steel reinforced concrete, a host of phenomena can be observed at work 
in a manner which may adversely affect the service life of a given structure. Additionally, the deleterious 
effects of many of these phenomena may have synergistic relationships, and so, must be considered in 
concert for the sake of accuracy of prediction. For the purposes of this work, these phenomena considered 
are as follows. 
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Corrosion of Steel Reinforcement 
The corrosion of steel reinforcement is the primary factor in the degradation of structural performance 

in reinforced concrete [Richardson, 2002]. In distributed corrosion, the buildup of corrosion product causes 
a separation of the binder from the reinforcement and will result in cracking or spalling. Localized corrosion 
results in a loss of strength of the steel reinforcement due to a loss in cross sectional area of the steel. In 
either case, the detection of either form by non-destructive means is problematic. 

In reinforced concrete, corrosion is an electrochemical process in which the steel reinforcement 
reacts with oxygen and moisture found in both the contents of the pore structure and cement binder itself. 
As such, the advancement of this process is typically couple with both oxygen and moisture transport 
throughout the concrete structure. The steel found in fresh concrete is typically surrounded by a passive 
film that inhibits the corrosive process. The protective quality of this film is reduced in the presence of 
critical levels of chlorides within the surrounding volume, and the film itself is directly attacked by the 
carbonation reaction brought on by the ingress of CO2. As such, the transport of both of these quantities 
must be taken into consideration when trying to accurately predict the rate of corrosion as well. 

Corrosion occurs when the cement binder surrounding the steel reinforcement becomes sufficiently 
saturated by moisture and oxygen to enable it to begin acting as an electrochemical cell. Once this has 
occurred, if the protective layer surrounding the steel reinforcement is depassivated or penetrated, a local 
anode forms in the reinforcement. At this point, the iron, Fe, in the steel is oxidized, transferring its electrons 
to and reducing the positively charged hydroxyl, OH+, ions at the cathode. The actual location of the cathode 
relative to the anode within the structure may vary. In some cases, a decidedly local depassivation of the 
protective layer surrounding the reinforcement can result in the cathode forming within the same steel body, 
and is characteristic of pitting corrosion. In other cases, the site of the cathode may be in another nearby 
steel body contained within the cement matrix, or even, in the case of the formation of a macro-cell, another 
section of the structure’s geometry entirely. The relative positions and sizes of the anode and cathode within 
the electrochemical cell may have pronounced effects on the rate of corrosion. 

Regardless of the type of corrosion present in the steel reinforcement, given a certain level of 
moisture saturation and depassivation of the protective layer, the rate of corrosion is limited by the rate of 
flow of electrons between the anode and cathode so long as there is no outside source of new electrons. 
This electron flow rate may be defined to be the number of electrons flowing per unit area and is referred 
to as the corrosion current density. Faraday’s laws may be used to describe the relationship between the 
corrosion current density and amount of mass lost to corrosion in a given system. From Faraday’s Second 
Law of Electrolysis, that is, that the mass of different substances liberated given a quantity of electrical 
charge is proportional to the ratio of the atomic mass and the valence, yields 

݉ ൌ
ܥܯ
ܨݖ

																																																																													ሺ10ሻ 

where ݉ is the mass lost, ܯ is the atomic mass of the ions in question, ݉ is the electric charge, ݖ is the 
valence, and F is Faraday’s constant. 
 Rodriguez et al. [1996] was able to describe the depth of penetration of pitting corrosion using 
Faraday’s Laws with following system of equations: 

߮ ൌ ߮଴ െ  ሺ11ሻ																																																																							ݔߙ

and 

ݔ ൌ  ሺ12ሻ																																																																					ݐ௖௢௥௥ܫ0.115

where ߮ is the residual bar diameter, ߮଴ is the initial bar diameter, ߙ takes the value of 2 or 8 in the cases 
of general and pitting corrosion respectively, ݔ is the depth of penetration into the reinforcement, ܫ௖௢௥௥ is 
the corrosion rate, and t is the time since the onset of corrosion measured in years. 
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Moisture Transport 
 Water is a primary reactant in many of the chemical reactions that takes place in reinforced concrete, a 
common solvent for many of the aggressive species at work in reinforced concrete, acts as a means of 
energy conveyance (as in the case of heat), and is also a source of mechanical stresses due to freeze/thaw 
processes in the pore structure of concrete. It is for these reasons that accurate simulation of moisture 
transport is of paramount importance when making service life predictions for reinforced concrete 
structures. 
 The movement of moisture in a body of concrete has been described in a number of ways. As concrete 
is a porous medium, the ingress of fluid moisture may be described in terms of pressure differential driven 
capillary action by the following relationships 

ܸ ൌ  ሺ13ሻ																																																																																ݐ√ܵܣ
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where ܸ is the cumulative volume of absorbed liquid, ܣ is the cross-sectional area exposed to the liquid, ܵ 
is the sorptivity, ݐ is time, ݅ is the cumulative liquid intake and ݂ is the porosity. 
 Moisture in the form of vapor may travel through concrete by means of gaseous diffusion, as described 
by Fick’s first law of diffusion as described by the following equation 

ܬ ൌ െܥ׏ܦ																																																																															ሺ16ሻ 

where ܬ is the mass transport rate in terms of mass per area per second, ܦ is the diffusivity coefficient, c is 
the moisture concentration, and x is position. 
 Ionic diffusion, described by Fick’s second law, may also be used to describe the flux of moisture, 
particularly during the diffusion controlled stage of hydration, wherein moisture transport into the center of 
hydrating CHS grains is dominated by this process. As with gaseous diffusion, it is typically driven by 
differences in concentration. It is given by the general form: 
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 One difficulty in inherent in the use of Fick’s first and second laws of diffusion in describing transport 
lies in characterizing the diffusion coefficient, ܦ. In concrete we cannot assume perfect continuity of the 
cement binder, and so, the porosity and tortuosity of the system must be taken into account. Maekawa et 
al. [2009] defined these terms as scalar coefficients contained within D itself, and in both cases, calculated 
their value based on smeared or averaged characteristics found at lower length scales. Furthermore we 
cannot assume D is a constant scalar. In defining D to be a scalar field, we introduce a nonlinearity that 
necessarily changes the general form of Fick’s second law to: 
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 ሺ18ሻ																																																																							ܥ

as was the case when this form of the diffusion equation was derived by Klute [1952]. 
Lastly, depending on the physical characteristics of the concrete body in question, it may be necessary 

to describe moisture transport in terms of convective motion. General convection may be described by the 
Richards equation as: 

ܥ߲
ݐ߲

ൌ ׏ ∙ ሺܭሺܪሻ݄׏ሻ																																																																		ሺ19ሻ 

where ܭ is the hydraulic conductivity or filtration coefficient, H is the pressure head, and h is the total head. 
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 In the general form of the transport PDE, the total flux of a given quantity is typically decomposed into 
diffusive and convective terms, which take the form of the two previous methods of transport. In many 
systems, it becomes necessary to consider the total moisture content at a given point as being the sum of 
moisture found in both liquid and gaseous phases, as is the case in Maekawa et al. [2009]. 
 
Oxygen Transport 
 As the corrosion process of steel reinforcement in concrete structures is limited by the availability of 
oxygen at the cathode site, oxygen movement and content within said structures must be considered. The 
total ingress of oxygen in a concrete system may be described both in terms of a gaseous phase in addition 
to oxygen dissolved in liquid moisture. As such, oxygen transport is at least partially coupled with moisture 
transport, specifically of the liquid phase. The processes by which oxygen is transported within a concrete 
system are gaseous and ionic diffusion, and convective transport as detailed in the previous section. 
 
Chloride Ion Transport 
 Free chlorides introduced into a concrete structure will, if allowed to attain a certain concentration 
threshold in the area of the steel reinforcement, accelerate the corrosion process. The exact process by which 
this occurs is not entirely understood. This may be due to the chlorides reacting either with the passive layer 
surrounding the reinforcement, or this may be due to the preferential reaction of the chlorides with iron 
ions. In any case, what is agreed on is the notion that chloride transport is dominated by Fickian diffusion 
and capillary action, as free chlorides are introduced primarily in solution with moisture. As the carbonation 
process in cement may release chloride ions previously bound with aluminates in the CSH grains, these 
processes may be coupled, as this represents another source of free chlorides. 
 
Carbonation and CO2 Transport 
 The movement of CO2 in reinforced concrete is characterized in much the same way as chloride and 
oxygen movement. However, the diffusion of CO2 represents the carbonation reaction front wherein the 
free carbon is allowed to react with CSH and form calcium carbonates. While this does not represent a 
source of performance degradation for the cement binder itself, should the reaction front reach the depth of 
the steel reinforcement, the carbon will react with and break down the passive layer surrounding the 
reinforcement and leave the steel open to attack by corrosion. 
 
Akali-Silica Reactions 
 The movement of akalis in concrete is dominated by capillary action. Under the right conditions, the 
akaline pore solution will react with siliceous materials in the binder to form a gel, the volume of which is 
greater than its constituent reactants. The buildup of this gel can be the source of mechanical stresses in the 
cement binder which may induce or propagate cracks and thereby weaken the structure mechanically and 
open it up to further attack by aggressive chemical species. 
 
Hydration Heat Generation and Heat Conduction 
 The movement of heat in a concrete structure may be described by the general transport PDE, being 
characterized by both convective and diffusive transport mechanisms. Thermal expansion, whether 
generated by heat provided by hydration reactions or from another source, may cause mechanical stresses 
that induce or propagate crack formation in a concrete structure, thereby degrading is performance. 
 
Calcium Ion Leaching and Transport 
 As with both oxygen and chlorides, calcium ion transport is coupled with moisture transport and is 
characterized by Fickian diffusion and capillary action, as calcium ions are dissolved in the pore solution. 
Unlike oxygen and chlorides, the primary concern with calcium transport is not so much the introduction 
of said ions to the system, but their egress which is most noteworthy. As calcium is a chemical component 
of CSH grains, which are in turn, the primary constituent of the cement binder, the phenomena of calcium 
leached represents a potential for the loss of mass in a concrete system. In addition to contributing to a loss 
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of mechanical strength, this loss of mass also contributes to increased porosity in the cement binder and 
weakening it against the influx of further aggressive chemical species. 
 

In conclusion, there are a nature and quantity of processes, both chemical and mechanical, at work in 
steel reinforced concrete make accurate simulation difficult. As such, the use of a variety of techniques to 
characterize the nature of concrete at different length scales becomes a necessary component of any accurate 
and inclusive simulation. With respect specifically to the simulation of the movement of chemical species 
and energy, the use of continuum balance laws coupled with the constituent equations derived from fluid 
mechanics and Faraday’s laws as well as coefficients derived through the use of numerical methods like 
FEA and atomistic calculations like energy minimization techniques and ab inito values. 
 
 
3.  Multiphysics and Multiscale Modeling 
 
3.a.  General Formulation of the Transport Equality 

In order to simultaneously solve the complex system of non-linear equations describing the different 
multiscale chemo-physical/mechanics, each event is simultaneously and/or sequentially processed with 
revising the internal state variables commonly referred to and the computation is cycled until the whole 
conservation requirement is satisfied at each time step (see Figure 4). The spatial discretization of this 
coupled system is performed through the finite element method using the standard Galerkin procedure. An 
Euler implicit scheme can be used to discretize the transient part of the model. The nonlinear set of 
equations is solved with the Newton-Raphson algorithm. The computational scheme has the potential to 
include several multiscale kinematic chemo-physical and mechanical events responsible of the concrete 
degradation. 

 

Figure 4 – Sub-structure platform of Concrete Model for Durability 
[Maekawa et al., 2003-2009]. 

Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum are solved with 
hydration, carbonation, corrosion, ion dissolution, damage evolution and their thermodynamic/mechanical 
equilibrium. Mass and energy conservation laws govern the thermo-physics of the materials, as well as the 
balance equations ruling mechanics of structures. These conservation laws must be satisfied in all material 
systems and so they apply to the field of concrete materials. 
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Given a body, described by the domain Ω ∈ ܴଷ, with a boundary surface S, the notion of continuum 
mechanics is used to define the balance of a given quantity within that body to be equal to the summation 
of the point density and the (negative) point sink integrated across the domain,  plus the point flux integrated 
across the surface boundary (Figure 3). This yields the quantity balance formulation of: 

න
߲
ݐ߲
dܸ	࢛

௏

൅	නࢌ ∙ dS࢔
ௌ

ൌ 	න dܸ࢙
௏

																																																														ሺ20ሻ 

The divergence theorem is invoked to equate the flux, surface integral to a volume integral, and 
combine the integrals to yield the general form of 

නࢌ ∙ ds࢔
ௌ

ൌ නߘ ∙ dܸࢌ
௏

																																																																					ሺ21ሻ 

න൤
߲
ݐ߲
࢛ ൅ ߘ ∙ ࢌ െ ൨࢙ dܸ ൌ 0

௏

																																																														ሺ22ሻ 

This integral formulation implies the final general form of 

߲
ݐ߲
࢛ ൅ ߘ ∙ ࢌ െ ࢙ ൌ ૙																																																																						ሺ23ሻ 

 
The flux term may then be additively decomposed in order to more accurately characterize the nature 

of movement across the boundary. In many cases the flux term is decomposed into convective and diffusive 
fluxes 

߲
ݐ߲
࢛ ൅ ߘ ∙ ሺܿߩܞሻ െ ߘ ∙ ሺܿߘߩܦሻ െ ࢙ ൌ 0																																																		ሺ24ሻ 

 There are some cases where the decomposition is the result of a different motivation, such as Maekawa 
et al. [2009] additive decomposition of flux based on the phase of the transported quantity. 

 

 
In this section, we recapitulate the governing equations for the stress equilibrium, heat conduction and 
diffusion and their discretization using the finite element method. The physical process of coupled 
thermoelastic deformation is governed by the following set of equations. 

 

Stress Equilibrium 

The equilibrium of the body is expressed, in a Cartesian coordinate system, as 

સ்ો ൅ ܎ ൌ ૙																																																																											ሺ25ሻ 

in which  

ો ൌ ሺߪଵଵ, ,ଶଶߪ ,ଷଷߪ ,ଵଶߪ ,ଵଷߪ  ሺ26ሻ																																																											ଶଷሻߪ

 is the three-dimensional vector (or tensor) of stress components, with tensile normal stress regarded as ࣌
positive, and ܎ are the body forces. These stress quantities represent the increase over the initial state of 
stress due to the applied loading and the temperature change. 

Strain-displacement relations may be expressed in matrix form as 

ઽ ൌ સܝ																																																																																						ሺ27ሻ 

where 
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ઽ ൌ ሺߝଵଵ, ,ଶଶߝ ,ଷଷߝ ,ଵଶߝ ,ଵଷߝ  ሺ28ሻ																																																																		ଶଷሻߝ

is the vector of strain components, and ்ܝ ൌ ሺݑଵ, ,ଶݑ  .ଷሻ is the vector of displacement componentsݑ

For the case of the thermoelastic deformations, Hooke’s law for an isotropic material may be written 
as 

ો ൌ ۳ઽࢋ ൌ ۳ሺઽ െ ઽ࢚ሻ ൌ ۳ઽ െ ሺܶߚ െ ଴ܶሻ૚																																																			ሺ29ሻ 

where the tensor of stress is composed of six different stress components 

ો ൌ ሺߪଵଵ, ,ଶଶߪ ,ଷଷߪ ,ଵଶߪ ,ଵଷߪ  ሺ30ሻ																																																													ଶଷሻߪ

଴ܶ and ܶ represent the constant initial and current absolute temperatures, respectively, and ۳ is a matrix of 
elastic constants given by 

۳ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ߣ ൅ ܩ2 											ߣ

ߣ ൅ ܩ2
		ߣ 										0
		ߣ 										0

0 	0
0 	0

ߣ ൅ ܩ2 	0
ܩ

0 	0
0 	0

ݕݎݐ݁݉݉ݕܵ
ܩ 0

ےܩ
ۑ
ۑ
ۑ
ۑ
ې

																																																		ሺ31ሻ 

with ߣ and ܩ the Lame  modulus and elastic shear modulus of the material, respectively. The thermal 
stress modulus, ߚ is given by 

ߚ ൌ
ߙܧ

1 െ ߥ2
																																																																																			ሺ32ሻ 

where ܧ and ߥ are Young’s modulus and Poisson’s ratio of the material and ߙ the coefficient of linear 
thermal expansion. In the case of Thermoelasticity, the Hooke’s law for an isotropic material is 

ો ൌ ۳ઽࢋ ൌ ۳ሺઽ െ ઽ࢚ሻ ൌ ۳ઽ െ ሺܶߚ െ ଴ܶሻ૚																																																ሺ33ሻ 

where ଴ܶ and ܶ represent the constant initial and current absolute temperatures, respectively. 

 

Convection-Diffusion 

 The current framework is based on the conduction/diffusion equation and needs to be extended to more 
general transport equations, such as those of convection-diffusion. The transient convection-diffusion 
equation can be written in general form as 

߲ܺ
ݐ߲

൅ ܺ׏ݑ െ ሻܺ׏ሺD׏ െ ݏ ൌ 0																																																							ሺ34ሻ 

where ܺ is the transported variable (i.e. the temperature in a thermal problem or the concentration in a 
pollution transport problem, etc.), ݑ is the velocity vector, ׏ is the gradient operator, D is the diffusivity 
matrix, and ݏ is the source term. 

The presence of convective terms (ܺ׏ݑ) deprives the standard Galerkin FEM of the best approximation 
property which it is known to possess in the case of self-adjoint (symmetric) operators. Since the Galerkin 
discretization of convective terms is akin to a central difference approximation, it tends to produce spurious 
oscillations. Moreover, an iterative algorithm or an explicit time integration scheme may become unstable. 

Several finite element methods have been introduced in numerical literature to avoid this misbehavior 
[Oñate and Manzan, 2000; Oñate, 2002; Zienkiewicz et al., 2005]. Among the more popular techniques are 
the following finite element procedures: 
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- Artificial Diffusion; 
- Streamline-Upwind Petrov-Galerkin (SUPG); 
- Generalized Galerkin, 
- Taylor-Galerkin; 
- Characteristic Galerkin (CG), 
- Galerkin Least Squares (GLS); 
- Subgrid Scale (SGS); and 
- Finite Increment Calculus (FIC). 

These stabilization techniques are aimed suppress the oscillations or, at least, to keep them small 
(bounded), and to obtain “stable” finite element solutions for the transient convection-diffusion equation. 

Oñate and Manzan [2000] showed that the FIC method, based on a new concept of flow balance over 
a “finite size” domain, allows reinterpreting and deriving most stabilized methods, at least in steady-state 
cases, using physical arguments. The FIC method in multidimensions can be written as 

ݎ̂ െ
݄
2
ݎ߲̂
ݐ߲

െ
ߜ
2
ݎ߲̂
ݐ߲

ൌ 0																																																																						ሺ35ሻ 

where ̂ݎ denotes the governing differential equations 

ܺ׏ݑ െ ሻܺ׏ሺD׏ െ ݏ ൌ 0																																																																	ሺ36ሻ 

and the coefficients ݄ and ߜ are respectively characteristic length and characteristic time parameters. 

Moreover, the FIC approach provides a general framework for computing the stabilization parameters 
in an objective manner. Therefore, the general transport Equation (35) can be discretized using FIC 
stabilization procedure to model convection-diffusion problems. 

 
3.b. Discretization of equations. 

 To simultaneously solve the complex system of non-linear equations describing the different multiscale 
chemo-physical/mechanics, the governing equations for the stress equilibrium, heat conduction and 
diffusion and their discretization must be implemented using the finite element method. The coupled 
chemo-thermomechanical process is governed by the following set of equations. 

 Stress equilibrium (Principle of Virtual Work): 

නߜઽ்
௏

ો	ܸ݀ െ න ்ܜ
ௌ೛

ܵ݀	ܝߜ െ න்܎
௏

ܸ݀	ܝߜ ൌ 0																																																																	ሺ37ሻ 

 Heat conduction: 

න ܿߩ	ߠߜ
ߠ݀
ݐ݀

ܸ݀
௏

൅ නસሺߠߜሻ	ܓ	ሺસߠሻ୘	ܸ݀
௏

െ නߠߜ	ݎఏ	ܸ݀
௏

െ න ܵ݀	ఏݍ	ߠߜ
ௌഇ

ൌ 0																									ሺ38ሻ 

 Diffusion: 

න 	߶ߜ
݀߶
ݐ݀

ܸ݀
௏

൅ නસሺߜ߶ሻ	۲	ሺસ߶ሻ୘	ܸ݀
௏

െ න߶ߜ	ݎథ	ܸ݀
௏

െ න ܵ݀	థݍ	߶ߜ
	ௌഝ

ൌ 0																									ሺ39ሻ 

where the displacements ܝ, the temperature ߠ and the concentration ߶ of the diffusing species are the 
degrees of freedom. The term ࣌ is the three-dimensional vector (or tensor) of stress components, with 
tensile normal stress regarded as positive, ܎ the surface forces and ܎ the body forces. 

Fourier’s Law for heat conduction, also referred to as Fick’s for diffusion or Darcy’s law for fluids through 
porous media, depending on the physical problem or phenomenological transport law, defines the heat flux 
 in its very general form ܙ
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ఏܙ ൌ ൝
ఏ௫ݍ
ఏ௬ݍ
ఏ௭ݍ

ൡ ൌ െ ቎

݇௫௫ ݇௫௬ ݇௫௭
݇௬௫ ݇௬௬ ݇௬௭
݇௭௫ ݇௭௬ ݇௭௭

቏

ە
ۖۖ
۔

ۖۖ
ۓ
ߠ߲
ݔ߲
ߠ߲
ݕ߲
ߠ߲
ۙݖ߲
ۖۖ
ۘ

ۖۖ
ۗ

ൌ െܓ	સߠ																																										ሺ40ሻ 

where ܓ ൌ  is a ܓ ሻ is the thermal temperature-dependent conductivity matrix for concrete. The matrixߠሺܓ	
symmetric form due to energy arguments (i.e. ݇௫௬ ൌ ݇௬௫, etc.). For the isotropic case, the thermal 
conductivity is ܓ ൌ 	݇۷, and in the orthotropic case, 

ܓ ൌ ቎
݇௫ 0 0
0 ݇௬ 0
0 0 ݇௭

቏.																																																																										ሺ41ሻ 

The Fick’s law relates the diffusive flux to the concentration under the assumption of steady state, such as 

థܙ ൌ ൝
థ௫ݍ
థ௬ݍ
థ௭ݍ

ൡ ൌ െ ቎
௫௫ܦ ௫௬ܦ ௫௭ܦ
௬௫ܦ ௬௬ܦ ௬௭ܦ
௭௫ܦ ௭௬ܦ ௭௭ܦ

቏

ە
ۖۖ
۔

ۖۖ
ۓ
߲߶
ݔ߲
߲߶
ݕ߲
߲߶
ۙݖ߲
ۖۖ
ۘ

ۖۖ
ۗ

ൌ െ۲	સ߶																																												ሺ42ሻ 

where the diffusion coefficient or diffusivity ۲ is analogous to the thermal conductivity ܓ. Regarding the 
characterization of 	ߩ ,۲ ,ܓ, or ܿ, one should be aware of their evolution during the temperature evolution 
but also during the evolution of concentration variables in any diffusion processes occurring in the concrete, 
such as the cement hydration process. The experimental determination of these properties is usually 
performed with laboratory procedures. 

To solve the above differential equations, the following initial and boundary conditions must be taken into 
account: 

Mechanical 

 Prescribed displacements: ܝ ൌ ,ܠሺܝ  ;ሻ on ܵ௨ݐ
 Pressure: ݌ ൌ ,ܠሺ݌   ;ሻ on ܵ௣ݐ
 Volumetric forces ܎ in ܸ, such as gravity;  

Thermal 

 Prescribed temperatures: ߠ ൌ ,ܠሺߠ  ;ሻ on ܵఏݐ
 Surface heat flux: ݍఏ ൌ ,ܠఏሺݍ   ;ሻ on ܵఏݐ
 Volumetric heat flux ݎఏ ൌ ,ܠఏሺݎ  ሻ  in ܸ, such as the internal heat generated by cementݐ

hydration;  
 Surface heat convection: ݍ ൌ ݄ሺߠ െ ݄ ଴ሻ on ܵఏ whereߠ ൌ ݄ሺ࢞,  ሻ is the film coefficient andݐ

଴ߠ ൌ ,࢞଴ሺߠ  .ሻ is the sink temperatureݐ
 Heat radiation: ݍ ൌ ߠሾሺܣ െ ௭ሻସߠ െ ሺߠ଴ െ  ௭ߠ ௭ሻସሿ on ܵఏ where A is the radiation constant andߠ

is the value absolute zero on the temperature scale.  

Diffusional 

 Prescribed concentrations: ߶௞ ൌ ߶௞ሺܠ, ሻ on ܵథݐ
௞ with ݇ ൌ ሺ1, ݊ሻ; 

 Surface diffusion flux: ݍథ
௞ ൌ థݍ

௞ሺܠ, ሻ on ܵథݐ
௞ with ݇ ൌ ሺ1, ݊ሻ  

 Volumetric diffusion flux	ݎథ
௞ in ܸ with ݇ ൌ ሺ1, ݊ሻ; 



LWS-2  Final Report 
    

 

25 

 Surface Diffusion convection: ݍథ
௞ ൌ ݄థ

௞ ሺ߶௞ െ ߶௞
଴ሻ on ܵథ

௞ where ݄థ
௞ ൌ ݄థ

௞ ሺ࢞,  ሻ is the filmݐ

coefficient and ߶௞
଴ ൌ ߶௞

଴ሺ࢞, ݇ ሻ is the sink concentration, withݐ ൌ ሺ1, ݊ሻ. 
 Diffusion radiation:ݍథ

௞ ൌ థܣ
௞ ൣሺ߶௞ െ ߶௞

௭ሻସ െ ሺ߶௞
଴ െ ߶௞

௭ሻସ൧ on ܵథ
௞ where ܣథ

௞  is the radiation 
constant and ߶௞

௭ is the value absolute zero on the kth concentration scale, with ݇ ൌ ሺ1, ݊ሻ. 

Since there can be several independent concentration variables ߶ଵ,… . , ߶௡,  heat can be generated by 
different chemical and/or physical mechanisms, therefore the volumetric heat flux ݎఏ in ܸ can be the 
addition of several volumetric heat flux terms, such as 

ఏݎ ൌ ,ܠఏሺݎ ሻݐ ൅		෍ ܵఏ
௞ሺܠ, ሻݐ

௡

௞ୀଵ

																																																																ሺ43ሻ 

3.c.  Implementation in the user element subroutine UEL. 

 The user-element subroutine (UEL) is employed to incorporate the governing equations described in 
the previous section into the finite element code Abaqus. The UEL subroutine allows to the user to use a 
maximum number of 20 additional degrees of freedom (DOF's) in addition to the existing degrees of 
freedom (displacement, temperature, etc).   

The implementation of the user element subroutine was performed such that the solution is obtained using 
the linear perturbation procedure for small diplacements, in which the Newton-Raphson method is applied 
to the set of discretized nonlinear equations 

۵௧ା୼௧ ൌ ۵൫ܝ௧ା୼௧, ી௧ା୼௧,૖௧ା୼௧൯ ൌ ૙ 

۶௧ା୼௧ ൌ ۶൫ી௧ା୼௧,૖௧ା୼௧൯ ൌ ૙																																																											ሺ44ሻ 

۴௧ା୼௧ ൌ ۴൫ી௧ା୼௧,૖௧ା୼௧൯ ൌ ૙ 

that corresponds to the discretized equations 

۵௧ା୼௧ ൌ න۰்ોሺܝ௧ା୼௧, ી௧ା୼௧,૖௧ା୼௧ሻ	ܸ݀
௏

െ නܜ்ۼ	݀ܵ
ௌ

൅ න܎்ۼ	ܸ݀
௏

ൌ 0 

۶௧ା୼௧ ൌ
1
Δݐ
නࢀۼ	ܿߩሾߠ௧ା୼௧ െ ௧ሿܸ݀ߠ
௏

൅ නሺસۼሻࢀ	ܓ	સߠ		ܸ݀
௏

െ නݎࢀۼ	ܸ݀
௏

െ න ܵ݀ݍࢀۼ
ௌ೜

																									 

൅න ߠሺ݄ࢀۼ െ 	଴ሻ݀ܵߠ
ௌ೎

൅ න ߠሾሺܣࢀۼ െ ௭ሻସߠ െ ሺߠ଴ െ ௭ሻସሿ݀ܵߠ
ௌೝ

ൌ 0																		ሺ45ሻ 

۴௧ା୼௧ ൌ
1
Δݐ
නࢀۼ	ሾ઴௧ା୼௧ െ ઴௧ሿܸ݀
௏

൅ නሺસۼሻࢀ	۲	સ઴	ܸ݀
௏

െ න܁ࢀۼ	ܸ݀
௏

൅ න ܵ݀ܙࢀۼ
ௌ೜

 

Assuming the state is known at the time t, the equations are solved at the time ݐ ൅ Δݐ and for the ݇௧௛ 
iteration, the Newton-Raphson method leads to the linear system of equations 

۵௧ା୼௧ ൅
߲۵௧ା୼௧

ܝ߲
௞ାଵܝߜ	 ൅

߲۵௧ା୼௧

߲ી
ી௞ାଵߜ	 ൅

߲۵௧ା୼௧

߲૖
૖௞ାଵߜ	 ൌ ૙ 

۶௧ା୼௧ ൅
߲۶௧ା୼௧

ܝ߲
௞ାଵܝߜ	 ൅

߲۶௧ା୼௧

߲ી
ી௞ାଵߜ	 ൅

߲۶௧ା୼௧

߲૖
૖௞ାଵߜ	 ൌ ૙																																		ሺ46ሻ 

۴௧ା୼௧ ൅
߲۴௧ା୼௧

߲ી
ી௞ାଵߜ	 ൅

߲۴௧ା୼௧

߲૖
૖௞ାଵߜ	 ൌ ૙ 

where the unknowns for displacement, temperature and concentration are 
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௞ାଵܝߜ ൌ ௞ܝ
௧ା୼௧ െ ௞ܝ

௧  

ી௞ାଵߜ ൌ ી௞
௧ା୼௧ െ ી௞

௧ 																																																																							ሺ47ሻ 

૖௞ାଵߜ ൌ ૖௞
௧ା୼௧ െ ૖௞

௧  

To update the unknowns during each iteration and until the global convergence is satisfied, the Jacobian ۹ 
and the right-hand side (or vector force) ۿ were defined in the user element subroutine and returned to the 
Abaqus solver  

۹	 ൝
௞ାଵܝߜ
ી௞ାଵߜ
૖௞ାଵߜ

ൡ ൌ ۿ							with						ۿ ൌ ൝
െ۵௧ା୼௧

െ۶௧ା୼௧

െ۴௧ା୼௧
ൡ																																																				ሺ48ሻ 

where the unsymmetric stiffness matrix of the system is 

۹ ൌ ቎

ܝܝ۹ ીܝ۹ ૖ܝ۹

۹ીܝ ۹ીી ۹ી૖

۹૖ܝ ۹૖ી ۹૖૖

቏ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
۵ࣔۍ

࢚ାઢ࢚

ܝࣔ
	

࢚ାઢ࢚۵ࣔ

ࣔી
࢚ାઢ࢚۵ࣔ

ࣔ૖
࢚ାઢ࢚۶ࣔ

ܝࣔ
࢚ାઢ࢚۶ࣔ

ࣔી
࢚ାઢ࢚۶ࣔ

ࣔ૖
࢚ାઢ࢚۴ࣔ

ܝࣔ
࢚ାઢ࢚۴ࣔ

ࣔી
࢚ାઢ࢚۴ࣔ

ࣔ૖ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

																																									ሺ49ሻ 

According to the UEL conventions in Abaqus, the solution variables (displacement, velocity, etc.) are 
arranged on a node/degree of freedom basis. Therefore, the degrees of freedom of the first node are first, 
followed by the degrees of freedom of the second node, etc. Following this convention, the flux vector ۿ 
and Jacobian matrix ۹  were rearranged at the end of the UEL subroutine. 
 
In the current user element implementation, the shape functions of eight types of elements, such as two- 
and three-dimensional, linear and quadratic elements, were defined (Figure 5): 

- 3-node linear triangle 
- 4-node bilinear quadrilateral 
- 6-node quadratic triangle 
- 8-node biquadratic quadrilateral 
- 4-node linear tetrahedron 
- 8-node linear brick 
- 10-node quadratic tetrahedron 
- 20-node quadratic brick 

Based on the number of nodes and dimension of the analysis, the type of element is automatically selected 
in the subroutine. Therefore different type of elements can be defined in the input file and used 
simultaneously in the same analysis. Also, based on the number of degrees of freedom defined in the input 
file, the analysis can solve for displacements, temperature and/or diffusion. 
 



LWS-2  Final Report 
    

 

27 

 
Figure 5 – Type of elements implemented in the user element subroutine. 

 
 
The coupling Jacobian terms ۹ܝી, ۹ܝ૖, ۹ી۹ ,ܝી૖, and ۹૖ી were implemented in the current user element 
subroutine in case of coupled multiphysics analysis. The Jacobian term ۹૖ܝ was set to zero as the diffusion 
equations was assumed not depending on displacements. 

 

3.d.  Example: Moisture Diffusion Analysis in Concrete. 

 The physical model used in the present study is shown in Figure 6. It is a concrete slab of 40 cm by 80 
cm. The concrete slab contains initially has 30% relative humidity (RH). The concrete slab is exposed to 
40% RH on the right lateral surface and to a diffusive flux of 94 m2/day on the left lateral surface. The other 
boundaries are assumed to be sealed. The material parameters used in the example are shown in Table 1. 

The mesh is composed of 800 two-dimensional 8-node user elements with quadratic shape functions. 
Figure 7 shows numerical results from the moisture diffusion analysis. One can see from the color contours 
in Figure 7 that the moisture is mainly penetrating in the direction towards the right of the concrete slab, 
and after 250 days the moisture distribution becomes steady state. 

 
Figure 6 – Boundary conditions for the moisture diffusion analysis in a concrete slab. 
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Plotting of user elements is not supported in Abaqus/CAE, therefore user elements were overlaid with 
8-node two-dimensional biquadratic diffusion standard elements DC2D8, and model plots of these standard 
elements can be displayed, allowing you to see the shape of the user elements. 

The material properties of the overlaying standard elements DC2D8 were chosen as zero, and the 
degrees of freedom at the nodes of the user element were tied to nodes of the standard elements so that the 
solution is not changed by including them. In this analysis, the user element is defined with the degree of 
freedom 11 that corresponds to the temperature or concentration degrees of freedom at the nodes of the 
standard elements. 

Table 1 – Material diffusion properties. 

Properties Values 

Diffusion coefficient 
 (m2/day) ܦ

94 

Mass transfer factor 
 ௠ߙ

20 

Environmental humidity 
 ௘ (%) 0.4ܪ

Diffusive flux q 0.5 

Initial humidity ܪ଴ (%) 0.3 

 

 
Figure 7 – Moisture diffusion development in a concrete slab. 
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 Since there is an analogy between the heat transfer analysis and the diffusion process inside of a 
concrete body (see Table 2), this implementation allows the user to sequentially model heat transfer and/or 
several chemo-physical transport process such as moisture, chloride diffusion, etc. 

Table 2 – Corresponding terms in the differential equations for moisture diffusion and heat transfer. 

Heat Transfer Moisture 

(x,y,t) ܪሺݔ, ,ݕ  ሻݐ

K()/c ܦሺܪሻ 

h ߙ௠  

e ܪ௘  

s ܪ௦  

 
 
4.  Extension of the UEL development to the XFEM 

Modeling stationary discontinuities, such as a crack in concrete, with the conventional finite element 
method requires that the mesh conforms to the geometric discontinuities. Therefore, considerable mesh 
refinement is needed in the neighborhood of the crack tip to capture the singular asymptotic fields 
adequately. Modeling a growing crack is even more difficult because the mesh must be updated 
continuously to match the geometry of the discontinuity as the crack progresses, and it requires projection 
of variables between different meshes. The eXtended Finite Element Method (XFEM), initially proposed 
by Belytschko and Black [1999] and Moës et al. [1999], alleviates the shortcomings associated with 
meshing crack surfaces and appears to be the preferable computational technique for modeling localized 
and mesh independent fracture in concrete [Asferg, 2006]. The XFEM is also preferable to the concept of 
embedded cracks hence in the XFEM the strains are independent in the separated parts of the elements 
whereas they are partly coupled in the embedded concept [Jirásek and Belytschko, 2000]. XFEM is an 
extension of the conventional finite element method based on the concept of partition of unity by Melenk 
and Babuska [1996], which allows local enrichment functions to be easily incorporated into a finite element 
approximation. The presence of discontinuities is ensured by the special enriched functions in conjunction 
with additional degrees of freedom (DOFs). However, the finite element framework and its properties such 
as sparsity and symmetry are retained. In this manner, the discontinuity is included in the numerical model 
without modifying the discretization, as the mesh is generated without taking into account the presence of 
the crack (Figure 3). Only a single mesh is needed for any crack length and orientation. In addition, nodes 
surrounding the crack tip are enriched with DOFs associated with functions that reproduce the asymptotic 
linear elastic fracture mechanics (LEFM) fields. This enables the modeling of the crack discontinuity within 
the crack-tip element and substantially increases the accuracy in the computation of the stress intensity 
factors (SIFs). The crack discontinuities are allowed to continuously propagate through elements. To this 
end, a crack tip function is introduced to enhance the resolution of the displacement field approximation in 
the vicinity of the crack tip (Figure 8). 

The advantage of the XFEM is that the mesh is not required to conform to the discontinued geometry, 
and there is no need to remesh the bulk materials to account for the presence of the crack. Therefore, only 
a single mesh is needed for any crack length and orientation. The method can also be used to model 
inclusions in heterogeneous concrete materials (Figure 9). Moreover, multiscale material models can be 
implemented in user material subroutines of a finite element commercial code, such as Abaqus as 
continuum models. Each material model is characterized by internal state variables that represent the 
structural mechanic and chemo-physical state of the material, and also the rate of deterioration on the 
reinforced concrete structure. The internal state variables is used as criteria in the XFEM framework to 
model discontinuities, such as cracks, along an arbitrary, solution-dependent path. 
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Figure 8 – Concept of nodal enhancement in X-FEM-based crack analyses. 

Although the XFEM is one of the latest Abaqus features, it is not compatible with user-defined 
elements. The XFEM capabilities must therefore be implemented as part of the user-defined elements that 
governs the nonlinear equations of concrete degradation. Giner et al. [2009] introduced lately an 
implementation of the XFEM for fracture problems via the UEL user subroutine within Abaqus/Standard. 
They provided complete details of their data input format together with the proposed UEL user element 
subroutine. 

 
Figure 9 – Meshing and Modeling of heterogeneous concrete materials using XFEM [Loehnert and 

Wriggers, 2009]. 
 

Long-term degradation of concrete structures under permanently humid environmental conditions is 
mainly controlled by interacting chemical and mechanical processes leading to the destruction of the 
microstructure by the dissolution of cement constituents and the propagation of micro-cracks [Kuhl et al., 
2004]. As an example, for the prediction of the durability of cementitious materials taking into account the 
effects of cracks on the transport of moisture transport, Meschke and coworkers [2006] extended the 
XFEM-based crack model to chemo-physical and mechanical problem. In this work, similar extension of 
the XFEM-based crack model to physical-chemo-mechanical problem is addressed to take into account the 
interaction the interaction between the mechanical structural behavior and transport of aggressive 
substances. 
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Figure 10 – Nodal enrichment strategies to represent displacement [Moës and Belytschko, 2002]. 

 
 The XFEM technique is based on the crack tip enrichment and inclusion of the Heaviside jump function 
in the classical FEM technique. To this end, a crack tip function is introduced to enhance the resolution of 
the displacement field approximation in the vicinity of the crack tip (Figure 10). Numerically, it consists in 
discretizing the displacement field with shape functions ௜ܰሺݔሻ that are built on a mesh independent of the crack 
and accounting for the displacement jump across the crack surface and for the stress singularity at the crack front 
with enrichment functions, multiplied by the shape functions 
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The step function ܪሺݔሻ with a changing sign across the crack, enriches the nodes completely cut by the crack 
(set ܬ). It is convenient to define it with the help of the signed distance function to the crack ߶: 

ሻݔሺܪ ൌ sign	ሾ߶ሺݔሻሿ																																																																			ሺ51ሻ 

The four following branch functions enrich the nodes with a distance to the front inferior to a prescribed 
enrichment radius (set ܭ): 

ሻݔఈሺܨ ൌ ൜√ݎ cos ൬
ߠ

2
൰ , ݎ√ sin ൬

ߠ

2
൰ , ݎ√ sin ൬

ߠ

2
൰ sin ߠ , ݎ√ cos ൬

ߠ

2
൰ sin  ሺ52ሻ																						ൠߠ

where ሺݎ,  ሻ is a polar coordinate system with origin at the crack tip, and N୍ሺxሻ are the standard finiteߠ
element shape functions. The enrichment coefficients ௝ܽ and ܾூ

ఈare associated with nodes and ௘ܰሺܫሻ is the 
number of coefficients for node ܫ; it is chosen to be four for all nodes around the crack tip and zero at all 
other nodes. 
 The implementation of the XFEM is performed through the user element subroutine UEL that was 
developed by Giner et al. [2009]. As all user elements, this implementation is limited by the information 
passed in the UEL subroutine by the commercial code Abaqus, but it also takes advantage of many features 
available in this code, such as the solver, the boundary conditions, the pre-processing and post-processing, 
etc. The main disadvantage is that user elements cannot be fully post-processed as standard elements in 
Abaqus, and as mentioned above, a Python script is needed to generate element information in the output 
database. 
 In this implementation, all enriched elements are defined by a 4 node user element with 12 degrees of 
freedom (DOFs) per node. Table 3 gives the description of DOFs according to the Abaqus convention. In 
this 2D analysis, DOFs 3 and 4 are used as additional DOFs within the Heaviside and crack tip enriched 
elements. DOFs 5–7 and 11–15 are only active in the crack tip enriched elements. The different integration 
steps in the XFEM implementation are identified in the chart form in Figure 11 and are based on the 
integration procedure performed by Giner et al. [2009], in which displacements are the only degrees of 
freedom. 
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Figure 11 – XFEM implementation procedure based on the work of Giner et al. [2009]. 
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Different numerical implementation aspects must be considered to achieve this goal of coupling the 
classical elastic fracture XFEM to other phenomena: 

 First, governing equations must be coupled, as temperature dependence is assumed to be the 
linking variable that couples the different governing equations; 

 Governing equations are discretized and solved using the Galerkin finite element methodology 
and then implemented in the user element subroutine UEL; 

 Then, the numerical application of the enrichment strategy is applied to all degrees of freedom, 
which are the mechanical displacement, the temperature, and the concentration variables. 

 Enriched elements are divided in sub-elements to perform the quadrature integration while 
taking crack discontinuities into account. New boundary conditions within enriched elements, 
such as flux discontinuities, are considered at the crack interface. 

 Finally, the geometrical and material response characterized by displacements, temperature and 
is used to evaluate the aging degradation of concrete in a post-processing step.  

In this work, the same XFEM integration procedure can be applied with an extension of the number of 
DOF to include the temperature and concentration variables. The XFEM implementation can be either 
performed on 2D quadrilateral elements that can be divided into triangular or quadrilateral subelements, 
3D brick elements that can be divided into tetrahedral or brick subelements, depending on the type of 
enrichment functions (blended, Heaviside or crack-tip). 

Therefore, an identical nodal enrichment strategy for displacement is used to represent local 
(discontinuous) temperature and n concentration variables. In analogy to the partitioning of the 
displacement field u, the enrichment concept can also be applied to the incorporation of the temperature ܶ 
and n concentration variables ܥ௞ (݇ ൌ 1, ݊) within cracks  
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This enriched (X-FEM) modeling concept allows the incorporation of temperature and diffusive transport 
of concentrations within cracks. 

 
Figure 12 – Nodal enrichment strategies to represent concentration variables within X-FEM. 
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Example: Crack opening using a UEL-XFEM subroutine 

 To illustrate the implementation of the XFEM in Abaqus, input files with crack and element information 
were created to model a portion of a cracked finite strip loaded under uniform normal stress. Two different 
meshes are considered, a coarse mesh and a fine mesh (Figures 14 and 15). All elements that contained at 
least one enriched node are defined by the UEL-XFEM element subroutine. All other elements are 4-node 
standard elements from the Abaqus element library. Additional standard 4-node linear elements with a 
negligible stiffness have been inserted in the XFEM analysis for the purpose of plotting the deformed shape. 
These elements have negligible stiffness, are superimposed on every enriched element, and share the same 
node connectivity with enriched elements.  Nodes on both sides are constrained in the ݔ direction and nodes 
at the bottom are fully constrained. A displacement is applied at the nodes at the top. The crack location 
and the enriched nodes for both the Heaviside and crack tip enrichment are shown in the sketch on the top 
left of Figures 8 and 9. 

Table 3 – Degrees of freedom in Abaqus. 

Degrees of Freedom Description 
1 Displacement ݔ 
2 Displacement ݕ 
3 Displacement ݖ 
4 Rotation about ݔ axis 
5 Rotation about ݕ axis 
6 Rotation about ݖ axis 

7 
Warping amplitude  of 

beam section 

11-15 
First and successive 
temperatures in shell 
and plate elements 

 
 The contour plots of the Mises stress distribution using the XFEM implementation are shown on the 
top right of both Figures 14 and 15. The crack does not appear on each figure but its effects on the solution 
are included in the user enriched elements. Elements with low stress values (in blue) are overlay elements 
with negligible stiffness that help to visualize the discretization of the solution and its deformed shape. 
A standard FE solution with a discontinuity representing the crack has also been performed for comparison 
purposes (bottom left and right of Figures 8 and 9) with the XFEM solution. On the bottom right, elements 
along the crack discontinuity have been removed from the display to be able compare stress distribution 
with that of the XFEM analysis. We can observe that the XFEM stress distribution (top right) is very similar 
to the FE solution (bottom right) for both coarse and fine meshes (Figures 14 and 15), which means that the 
effects of the crack discontinuity are well included in the Heaviside and crack tip enrichments functions. 
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Figure 14 – Crack location and enriched nodes for a coarse mesh (top left). Mises contour plot with a 
XFEM formulation and with enriched elements and overlay elements (top right) for a coarse mesh; 

comparison with a standard FE solution with all elements displayed (bottom left) and without elements 
along the crack (bottom right). 

 
The slight difference between the XFEM and FE solutions in stress values is due to the mesh discretization. 
In the FE solution, element size was divided by two to incorporate the crack tip for some elements, which 
leads to higher stress values. In the same manner, the XFEM technique shows higher stress values around 
the crack tip for a fine mesh (Figures 14 and 15). 
 

Crack Tip Enrichment
Heaviside Enrichment
Crack
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Figure 15 – Crack location and enriched nodes for a fine mesh (top left). Mises contour plot with a 
XFEM formulation and with enriched elements and overlay elements (top right) for a coarse mesh; 

comparison with a standard FE solution with all elements displayed (bottom left) and without elements 
along the crack (bottom right). 

 
5.  Aging Degradation of Concrete 
 

The last aspect of this multiscale modeling approach is to develop an integrated model able to simulate 
the long-term durability of reinforced concrete structures used in NPP facilities. Initially, predictive 
methodologies already available in concrete codes are used for assessing the aging degradation process. 
Then, it is essential in these predictive methodologies to obtain the information developed in multiphysics 
analyses on the estimation of (i) the concrete degradation due to chemical and physical-mechanical stresses; 
and (ii) the water and flow properties during variably saturated flow conditions in (cracked) degraded 
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concrete. Finally, it is of great interest to incorporate the XFEM element-by-element crack propagation 
information in the durability model and to assess its damage effect on the long term structural performance. 
Data of experimental measurements of degradation in structures reported in the literature can be used to 
calibrate and validate the durability model. 

Service life of a concrete structure is defined in different ways depending on the degree of cumulative 
damage and identified aging processes (Figure 13). Some of these definitions are: 

 Time from construction until when the water saturation, chloride content at the reinforcement, frost 
damage, etc., are high enough to initiate concrete degradation and steel corrosion; 

 Time from construction to time at which signs of distress are visible/observable (acceptable 
degradation state); 

 Time from construction to time at which the member/component/structure is considered to be 
functionally unacceptable or unsafe (service life). 

 
5.a.  Damage modeling. 

The durability model is based on the damage degradation of material properties of concrete. Continuum 
damage mechanics (CDM) offer a means of modeling at the macroscopic level the material damage that 
occurs at the microscopic level. Development of a damage-based model requires definition of a damage 
evolution equation that characterizes the rate at which material damage is accumulated and eventually the 
orientation of the damage. The damage is inserted in the model as an internal state variable (ISV) that 
deteriorates the mechanical properties of concrete. The material response of this model describes the 
macroscopic response of a body of concrete that is many times the size of individual pieces of aggregate. 

 
Figure 13 – Durability modeling methodology to evaluate service life of concrete structures. 

 
The damage theory is based on the continuum damage mechanics (CDM). The model is based on the 

theory of rate-independent elastoplasticity with damage. The model is incorporated into the finite element 
code Abaqus as a user defined material model (UMAT-interface within UEL). 

Damage in CDM models is generally represented by the void volume fraction as it was initially 
proposed by Kachanov [1958] using the concept of effective stress,	ߪ. This theory is based on considering 
a fictitious undamaged configuration in which the damage is taken into account by measuring the reduction 
in the resistant area due to cracks beginning and spreading of the actual damaged configuration: 
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	,																																																																								ሺ54ሻ 

where ߪ is the stress in the actual damage configuration, and ܵ  and 	ܵ are the resistant area of the undamaged 
and damage configurations, respectively. The damage ܦ value ranges from ܦ ൌ 0, in the case of an 
undamaged material, to ܦ ൌ 1, in the case of a fully damaged material. Since the damaging mechanisms 
are different in uniaxial tension and compression experiments for concrete materials, the damage variable 
 ௠ is additively decomposed into two parts, ݀௧ for tension and ݀௖ for compressionܦ

௠ܦ ൌ ௧݀௧ߙ ൅  ሺ55ሻ																																																																					,	௖݀௖ߙ

where α୲ and αୡ are weighting coefficients [Mazars and Pijaudier-Cabot, 1989].  

Here, to represent the material damage in concrete, the reduced stiffness is described as a function of 
temperature, radiation, and/or other diffusion variable, such as leaching, in addition of being a function of 
void volume fraction that represents the pores and microcracks in a unit volume. 

The thermo-chemical material degradation at elevated temperatures (mainly due to micro-cracking and 
cement dehydration) lead to additional reduction of the material strength properties and is represented by 
the damage variable ܦ௧௖. Its contribution to the total reduction of the material strength properties is defined 
by [Pomaro et al., 2011] 

ߪ ൌ
ߪ

ሺ1 െ ௠ሻሺ1ܦ െ ௧௖ሻܦ
																																																													ሺ56ሻ 

total damage of the mechanical and thermo-chemical damages acting at the same time is therefore 
multiplicative, i.e. the total damage ܦ is defined by 

ܦ ൌ 1 െ ሺ1 െ ௠ሻሺ1ܦ െ  ሺ57ሻ																																																				௧௖ሻ.ܦ

Pomaro et al. [2011] upgraded this damage model definition by assuming that the nuclear radiation can 
generate a specific damage process in addition to the mechanical and thermo-mechanical ones so that the 
above equation becomes 

ܦ ൌ 1 െ ሺ1 െ ௠ሻሺ1ܦ െ ௧௖ሻሺ1ܦ െ  ሺ58ሻ																																											௥ሻ.ܦ

This material damage in the concrete structure leads to a degradation of material stiffness, as observed 
on the macroscale level, and it is represented by 

ܧ ൌ ଴ሺ1ܧ െ  ሺ59ሻ																																																																			ሻܦ

where ܧ଴ is the material stiffness of the undamaged concrete structure. 

 The material damage in the concrete structure leads to a degradation of material stiffness, as observed 
on the macroscale level, and it is represented by 

E ൌ E଴ሺ1 െ Dሻ,																																																																								ሺ60ሻ 

where ܧ଴ is the material stiffness of the undamaged concrete structure. The damage variable ܦ is defined 
by assuming that the nuclear radiation can generate a specific damage process in addition to the mechanical 
and thermo-mechanical ones [Pomaro et al., 2011] so that the above equation becomes 

D ൌ 1 െ ሺ1 െ D୫ሻሺ1 െ D୲ୡሻሺ1 െ D୰ሻ																																														ሺ61ሻ 

Lately it is widely realized that concrete structures are no longer maintenance-free. As a result, 
evaluation techniques for diagnostic inspection are in great demand in concrete engineering. As a detailed 
inspection of a concrete structure in service, core samples are usually drilled out and then both chemical 
and physical properties are measured. Concerning mechanical property of the physical property, the 
compressive strength and the modulus of elasticity (Young’s modulus) are normally determined by 
conducting a uniaxial compression test. These values are then compared, if possible, with those of the 
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specification. Otherwise, there is no qualified procedure to estimate mechanical properties responsible for 
the durability and the deterioration of concrete. In most cases, only the strength is evaluated whether the 
obtained value is good enough against designed stress. 

5.b.  Fatigue modeling 

 A MultiStage Fatigue (MSF) model initially developed for aluminum cast alloys (Horstemeyer et al., 
2001; McDowell et al., 2003, Xue et al., 2007) and further enhanced for magnesium alloys (El Kadiri et al., 
2006) is used here to predict the fatigue life of PM alloys. Since the PM alloys have similar microstructures 
and inclusions/defects, the modeling framework is inferred to be general enough to capture the fatigue 
behavior of these various PM alloys. Similarly to metals, material aging of concrete is generally associated 
with changes over time in mechanical properties such as creep, modulus, and ultimate compressive and 
tensile strengths. Moreover, the behavior of concrete is also highly nonlinear, having low tensile strength, 
shear stiffness and strength that depend on crack widths, and a confinement-dependent compressive elasto-
plasticity. Structural aging, on the other hand, is the combined effects of changes in the time-dependent 
material properties, the prior physical changes resulting from the past environmental and loading history of 
the concrete structure, and the current environmental conditions and applied loads [Rashid et al., 2011].  

 The high fidelity multistage fatigue (MSF) model predicts the amount of fatigue cycling required to 
cause the appearance of a measurable crack, the crack size as a function of loading cycles. The model 
incorporates microstructural features to the fatigue life predictions for incubation, microstructurally small 
crack growth, and long crack growth stages in both high cycle and low cycle regimes. 

The microstructure-based MSF model incorporates different microstructural discontinuities effect (pores, 
inclusions, etc.) on physical damage progression. This model partitions the fatigue life into three stages 
based on the fatigue damage formation and propagation mechanisms: 

- crack incubation (INC), 
- microstructurally small crack (MSC) and physically small crack (PSC) growth, and 
- long crack (LC) growth. 

The total fatigue life is decomposed into the cumulative number of cycles spent in several consecutive 
stages as follows: 

்ܰ௢௧௔௟ ൌ ூܰே஼ ൅ ܰெௌ஼ ൅ ௅ܰ஼																																																											ሺ62ሻ 

where ூܰே஼ is the number of cycles to incubate a crack at a micronotch that includes the nucleation of crack-
like damage and early crack propagation through the region of the micronotch root influence; ܰெௌ஼ is the 
number of cycles required for propagation of a microstructurally small crack with the crack length a. The 
crack range, ai < a < kDCS, with the DCS defined as the dendrite cell size, and k as the non-dimensional 
factor that is representative of a saturation limit for the encountering of a 3-D crack front with sets of 
microstructural discontinuities. The value ܰ ௅஼ is the number of cycles required for LC propagation for crack 
length a > (10–20) DCS, depending on the amplitude of loading and the corresponding extent of 
microplasticity ahead of the crack tip. This stage of crack extension is commonly characterized using 
standard fatigue crack growth experiments, ݀ܽ/݀ܰ versus ܭ߂. Finally ்ܰ௢௧௔௟ is the total fatigue life. 

To study the damage incubation life as a function of local plastic deformation, a modified Coffin–Mansion 
law was implemented based on the non-local maximum plastic shear strain, i.e.:  

ூܰே஼ ூܰே஼
ఈ ൌ ߚ ൌ

Δߛ௠௔௫
௣

2
																																																											ሺ63ሻ 

where ߚ is the non-local maximum plastic shear strain amplitude around the inclusion calculated using an 
average of maximum plastic shear strain over an area approximately one percent of the inclusion area, and 
CINC and  are the linear and exponential coefficients in the modified Coffin–Mansion law at the 
micronotch. The Paris Law is used to define the long crack growth rate (Paris et al., 1961). This implies 
that: 
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݀ܽ
݀ܰ

ൌ  ሺ64ሻ																																																																			ሻ௠ܭ߂ሺܣ

where A is the crack growth parameter and m the exponent in Paris Law, ΔK is the stress intensity factor, N 
the number of cycles, and logA is defined as a constant. 

The Multi-Stage Fatigue model was implemented in the subroutine Abaqus user output variable 
subroutine UVARM. It calculates the fatigue lives ூܰே஼, ܰெௌ஼, ௅ܰ஼ and ்ܰ௢௧௔௟ at each material point using 
the stress and strain amplitudes provided by the fatigue analysis, and store the values in user output variables 
UVARi. This MSF durability model can easily be integrated in the current Abaqus UEL subroutine via a 
user-defined post-processing subroutine that generates element output at all material calculation points of 
elements. This subroutine is called in UEL at the end of each increment when the solution has converged. 
The user subroutine can obtain the values of all nodal and material point quantities that are necessary to the 
durability model. The user subroutine calculates at the end of each increment the durability values at each 
material point and store them in user output variables (UVARi), which are added to the state variables 
SVARS of UEL to be available for post-processing in Abaqus Visualization module through a Python 
script. 

 

6.  Conclusions 

 In this work, we developed a numerical procedure for the implementation of the multiscale and 
multiphysics platform within the commercial FE code Abaqus for two- and three-dimensional transport 
process problems in concrete structures. In this user element subroutine UEL, multiple transport processes 
that occur in concrete and lead to the degradation, such as the ones presented in the literature review, can 
be user-defined and solved simultaneously with mechanical and thermal analyses. The UEL user element 
subroutine was verified and validated in Abaqus for eight different two- and three-dimensional, linear and 
quadratic, finite elements. The multiphysics formulation was theoretically extended to the XFEM theory, 
in which it was shown that the same Heaviside and crack tip enrichment functions for displacements can 
be used to discretize the temperature and concentration variables in order to model weak and strong 
discontinuities. Therefore, the current user element implementation constitutes a future platform for a 
multiphysics XFEM approach as it can be used for the numerical integration of the subelements that results 
from the decomposition of XFEM elements. The modeling of concrete deterioration of mechanical 
properties due transport processes was theoretically formulated within the framework continuum damage 
mechanics, in which an internal state variable representing the total damage and the sum of all damage 
mechanisms was introduced. The total damage variable and the damaged material stiffness were then finally 
incorporated in a Multi-Stage fatigue model for the assessment of aging degradation of concrete. 
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Appendix A 

 
Discretization of governing equations and implementation in UEL subroutine 

 
 
 

Principle of Virtual Work 

Using the Principle of Virtual Work (PVW), we write the weak form equation: 

නߜઽ்
௏

ો	ܸ݀ ൌ න்ܜ
ௌ

ܵ݀	ܝߜ ൅ න்܎
௏

.ሺA																																																								ܸ݀	ܝߜ 1ሻ 

The finite element approximation for displacement and virtual displacements leads to 

ܝ ൌ ,ݔሺۼ ܝߜ    ௘     andܝሻݕ ൌ ,ݔሺۼ .ሺA																																																						௘ܝߜሻݕ 2ሻ 

where ۼሺݔ,   .ሻ are the shape functions, (or basis functions, and, occasionally interpolation functions)ݕ
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where the ۰ matrix is defined by 
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The principle of virtual work (PVW) is defined by: 

නܝߜ௘்
௏

۰்ો	ܸ݀ ൌ නܝߜ௘்ܜ்ۼ	݀ܵ
ௌ

൅ නܝߜ௘்܎்ۼ	ܸ݀
௏

																																							ሺA. 5ሻ 

By eliminating the displacements ܝߜ௘் in the above equation, we obtain 

න۰்ો	ܸ݀
௏

ൌ න்ۼ

ௌ
ܵ݀	ܜ ൅ න்ۼ

௏
.ሺA																																																						ܸ݀	܎ 6ሻ 

The problem is nonlinear due to the material nonlinearities. Therefore we have: ો ൌ ોሺܝ௘ሻ and the finite 
element equation to solve is: 

۵ሺܝ௘ሻ ൌ න۰்ોሺܝ௘ሻ	ܸ݀
௏

െ නܜ்ۼ	݀ܵ
ௌ

൅ න܎்ۼ	ܸ݀
௏

ൌ ૙																																					ሺA. 7ሻ 

The system of equations 	܀ሺܝ௘ሻ is the out of balance/residual vector force. ܀ሺܝ௘ሻ ൌ ૙ is a set of non-
linear equations in u௘ that must be solved using the Newton-Raphson method. The Equation (16) is 
usually presented in the following form 
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۵ሺܝ௘ሻ ൌ ௘ܝ۹ െ ࢋ۴ ൌ 0																																																														ሺA. 8ሻ 

 

With the element stiffness matrix 

۹ ൌ න۰்۳۰	ܸ݀
௏

																																																																				ሺA. 9ሻ 

and where  

ࢋ۴ ൌ ࣂ۴ ൅ ࢚۴ ൅ .ሺA																																																																	ࢌ۴ 10ሻ 

is the load vector composed of the vector of actual surface forces ۴࢚ and body forces ۴ࢌ, and the thermal 
vector ۴ࣂ which represents fictitious forces for modeling thermal expansion: 

ࣂ۴ ൌ න۰்۳ઽ࢚	ܸ݀
௏

																																																																	ሺA. 11ሻ 

࢚۴ ൌ නܜ்ۼ	݀ܵ
ௌ

																																																																						ሺA. 12ሻ 

ࢌ۴ ൌ න܎்ۼ	ܸ݀
௏

																																																																			ሺA. 13ሻ 

Heat Conduction 

In the heat conduction problem, the energy balance 

න ߩ
ܷ݀
ݐ݀

ܸ݀
௏

ൌ නݍ	݀ܵ
ௌ

൅ නݎ	ܸ݀
௏

																																																							ሺܣ. 14ሻ 

where ሶܷ  is the material time derivative of the internal energy ܷ ൌ ܷሺߠሻ 

ܿሺߠሻ ൌ
ܷ݀
ߠ݀

																																																																														ሺA. 15ሻ 

Fourier Law’s, also referred to as Fick’s, or Darcy’s law depending on the physical problem, defines the 
heat flux ܙ in its very general form 

ܙ ൌ ൝
௫ݍ
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ۖۖ
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ൌ െܓસߠ																																						ሺA. 16ሻ 

where ܓ ൌ  is ܓ ሻ is the thermal temperature-dependent conductivity matrix for concrete. The matrixߠሺܓ	
a symmetric form due to energy arguments (i.e., ݇௫௬ ൌ ݇௬௫, etc.). For the isotropic case, the thermal 
conductivity is ܓ ൌ 	݇۷, and in the orthotropic case, 

ܓ ൌ ቎
݇௫ 0 0
0 ݇௬ 0
0 0 ݇௭

቏.																																																																	ሺA. 17ሻ 

Regarding the characterization of 	ߩ ,ܓ, ܿ, one should be aware of their evolution during the temperature 
evolution but also during the evolution of concentration variables in any diffusion processes occurring in 
the concrete, such as the cement hydration process. The experimental determination of these properties is 
usually performed with laboratory procedures. 
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To solve the above differential equation for heat conduction, one needs initial and boundary 
conditions: 

 Prescribed temperatures: ߠ ൌ ,ܠሺߠ  ሻ on ܵఏݐ
 Surface heat flux: ݍ ൌ ,ܠሺݍ  ሻ on ܵ௤ݐ
 Volumetric heat flux, such as the internal heat generated by cement hydration: r ൌ rሺx, tሻ in V 
 Surface convection: ݍ ൌ ݄ሺߠ െ ݄ ଴ሻ on ܵ௖ whereߠ ൌ ݄ሺ࢞, ଴ߠ ሻ is the film coefficient andݐ ൌ

,࢞଴ሺߠ  .ሻ is the sink temperatureݐ
 Radiation: ݍ ൌ ߠሾሺܣ െ ௭ሻସߠ െ ሺߠ଴ െ  ௭ is theߠ ௭ሻସሿ on ܵ௥ where A is the radiation constant andߠ

value absolute zero on the temperature scale. 

Using the divergence theorem 

නݍ	݀ܵ
ௌ

ൌ නܙ. ܵ݀	ܖ
ௌ

ൌ නdiv	ܙ	ܸ݀
௏

ൌ නસ୘	ܙ	ܸ݀
௏

																																														ሺA. 18ሻ 

The heat conduction equation (17) becomes 

න ߩ
ܷ݀
ݐ݀

ܸ݀
௏

െ නસ୘	ܙ	ܸ݀
௏

൅ නݎ	ܸ݀
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ൌ න ൤ߩ
ܷ݀
ݐ݀

െ સ୘	ܙ െ ൨ݎ ܸ݀
௏

ൌ 0																													ሺA. 19ሻ 

for any body volume ܸ, which leads to the strong form equation 

ߩ
ܷ݀
ݐ݀

െ સ୘	ܙ െ ݎ ൌ 0																																																																	ሺA. 20ሻ 

And the balance residual equation is 

ܴ ൌ ߩ
ܷ݀
ݐ݀

െ સ୘	ሾܓસߠሿ െ ݎ ൌ 0																																																							ሺA. 21ሻ 

The next step equalizes the number of derivatives on the test and trial functions. The balance residual 
equation with the weighted balance residual reads 

නߠߜ	ܴ	ܸ݀
௏

ൌ න ߩ	ߠߜ
ܷ݀
ݐ݀

ܸ݀
௏

െ නߠߜ	સ୘	ܙ	ܸ݀
௏

െ නߠߜ	ݎ	ܸ݀
௏

ൌ 0																									ሺA. 22ሻ 

On the second term 

නߠߜ	સ୘	ܙ	ܸ݀
௏

ൌ නߠߜ	સ୘	ሾܓસߠሿ	ܸ݀
௏

																																																							ሺA. 23ሻ 

The integration by parts in the case of a multidimensional integral is generalized in the divergence theorem. 
We may anticipate that the term ߠߜ	સ୘	ࢗ is the result of the chain rule applied to the vector ܙߠߜ such as 

સ୘	ሺܙߠߜሻ ൌ ܙ	સ୘	ߠߜ ൅ સሺߠߜሻ	ܙ 
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௏
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௏

																																											ሺA. 24ሻ 

																							ൌ නܙߠߜ ൉ ܵ݀	ܖ
ௌ

െ නસߠߜ	ࢗ	ܸ݀
௏

 

The surface integral can be decomposed into several terms 
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												ሺA. 25ሻ 
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Because the term ܙ ൉   is unknown on surface ܵఏ, we choose the test function must satisfy the condition ܖ
ሻ࢞ሺߠߜ ൌ 0 for  ࢞ ∈ ܵఏ, which leads to 

න ܙߠߜ ൉ ܵ݀	ܖ
ௌഇ

ൌ 0.																																																																						ሺA. 26ሻ 

Switching from ࢗ to െܓ	સߠ, the left hand side term in Equation (27b) becomes 

െන ܸ݀	ሿߠસ	ܓ	સ୘ሾ	ߠߜ ൌ න ܙߠߜ ൉ ܵ݀	ܖ
ௌ೜

൅ න ܙߠߜ ൉ ܵ݀	ܖ
ௌ೎

൅ න ܙߠߜ ൉ ܵ݀	ܖ
ௌೝ

െ නસሺߠߜሻܓ	ሺસߠሻ୘	ܸ݀
௏

	ሺA. 27ሻ
௏

 

The heat flux passing through ܵ௤ is known. Therefore if we attempt to satisfy this boundary condition in a 
weighted residual sense, we write 

න ݍሾߠߜ െ ሺܙ ൉ ሿ݀ܵ	ሻܖ
ௌ೜

ൌ 0																																																												ሺA. 28ሻ 

Similarly on the surface ܵ௥ 

න ߠሾ݄ሺߠߜ െ ଴ሻߠ 	െ ሺܙ ൉ ሿ݀ܵ	ሻܖ
ௌ೎

ൌ 0																																																				ሺA. 29ሻ 

and on the surface ܵ௥ 

න ߠሾሺܣሼߠߜ െ ௭ሻସߠ െ ሺߠ଴ െ ௭ሻସሿߠ 	െ ሺܙ ൉ ሻሽ݀ܵܖ
ௌೝ

ൌ 0																																				ሺA. 33ሻ 

If we had these three boundary conditions to weighted balance residual ׬ ௏ܸ݀	ܴ	ߠߜ ൌ 0, we obtain 

න 	ߠߜ ൤ߩ
ܷ݀
ݐ݀

െ સ	ሾܓ	સߠሿ െ ൨ݎ ܸ݀
௏

൅ න ߠߜ ቂݍ െ ቀܙ ൉ ቃ	ቁܖ ݀ܵ
ௌ೜

൅ න ߠߜ ቂ݄ሺߠ െ ଴ሻߠ 	െ ቀܙ ൉ ቃ	ቁܖ ݀ܵ												
ௌ೎

൅ න ߠߜ ቄܣሾሺߠ െ ௭ሻସߠ െ ሺߠ଴ െ ௭ሻସሿߠ 	െ ቀܙ ൉ ቁቅܖ ݀ܵ
ௌೝ

																																																					ሺA. 34ሻ 

The underlined surface terms cancel with the surface integral in (34) and we arrive at 

න ߩ	ߠߜ
ܷ݀
ݐ݀

ܸ݀
௏

൅ නસሺߠߜሻࢀ	ܓ	સߠ	ܸ݀
௏

െ නߠߜ	ݎ	ܸ݀
௏

න ܵ݀ݍߠߜ
ௌ೜

൅ න ߠሺ݄ߠߜ െ 																			଴ሻ݀ܵߠ
ௌ೎

 

൅න ߠሾሺܣߠߜ െ ௭ሻସߠ െ ሺߠ଴ െ ௭ሻସሿ݀ܵߠ
ௌೝ

ൌ 0																																												ሺA. 35ሻ 

where ߠߜ is an arbitrary variational field (test function) satisfying the essential boundary conditions with 
ሻܠሺߠߜ ൌ 0 for  ܠ ∈ ܵఏ. The body is approximated geometrically with finite element, so the temperature is 
also interpolated using the shape functions ۼሺݔ,  ሻ asݕ

ߠ ൌ ,ݔሺۼ .ሺA																																																																ሻીୣݕ 36ሻ 

where ࣂ௘ are the nodal temperatures. The Galerkin approach assumes ߠߜ, the variational field, is 
interpolated by the same functions  

ߠߜ ൌ ,ݔሺۼ .ሺA																																																															ી௘.ߜሻݕ 37ሻ 

First- and second-order polynomial in one, two, three dimensions are used for the shape functions ۼሺݔ,  .ሻݕ
The same shape functions are also used for temperature gradients inside a finite element: 



LWS-2  Final Report 
    

 

49 

સߠ ൌ સۼሺݔ, ሻી௘ݕ ൌ ۰ી௘ 				⟺ 				 ൦

ߠ߲
ݔ߲
ߠ߲
ݔ߲

൪ ൌ

ۏ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
߲ ଶܰ

ݔ߲
⋯

߲ ଵܰ

ݕ߲
߲ ଶܰ

ݕ߲
⋯
ے
ۑ
ۑ
ې
	ીୣ																										ሺA. 37ሻ 

With these interpolations the variational statement (35) becomes 

ࢀࢋીߜ ൝න ߩࢀۼ	
ܷ݀
ݐ݀

ܸ݀
௏

൅ නሺસۼሻࢀ	ܓ	સߠ	ܸ݀
௏

െ නݎࢀۼ	ܸ݀
௏

න ܵ݀ݍࢀۼ
ௌ೜

൅ න ߠሺ݄ࢀۼ െ 																				଴ሻ݀ܵߠ
ௌ೎

൅ න ߠሾሺܣۼ െ ௭ሻସߠ െ ሺߠ଴ െ ௭ሻସሿ݀ܵߠ
ௌೝ

ൌ 0ൡ																																																																							ሺA. 38ሻ 

and since ߠߜ are arbitrary chosen, this gives the system of equations 

න ߩࢀۼ
ܷ݀
ݐ݀

ܸ݀
௏

൅ නሺસۼሻࢀ	ܓ	સߠ		ܸ݀
௏

െ නݎࢀۼ	ܸ݀
௏

න ܵ݀ݍࢀۼ
ௌ೜

൅ න ߠሺ݄ࢀۼ െ 																																଴ሻ݀ܵߠ
ௌ೎

൅ න ߠሾሺܣࢀۼ െ ௭ሻସߠ െ ሺߠ଴ െ ௭ሻସሿ݀ܵߠ
ௌೝ

ൌ 0.																																																																						ሺA. 39ሻ 

This set of equations is the “continuous time description” of the geometric problem for heat conduction. 
For time dependence problems, where temporal discretization is needed, it is effective to employ numerical 
solutions in the time domain to get the solution of the differential equation. The generalized trapezoidal 
method proposes to express the relationship between the internal energy and the rate of internal energy at 
two different time instants, ݐ and ݐ ൅ Δݐ, as 

௧݂ା୼௧ ൌ ௧݂ ൅ ൣሺ1 െ ሻ݂ሶ௧ߛ ൅ 				ݐሶ௧ା୼௧൧Δ݂ߛ ⟷ 				 ௧݂ା୼௧ െ ௧݂

Δݐ
ൌ ሺ1 െ ሻ݂ሶ௧ߛ ൅ .ሺA													ሶ௧ା୼௧݂ߛ 40ሻ 

The central difference method with ߛ ൌ 0.5 has the highest accuracy. However, that form of operator tends 
to suffer from numerical oscillations in the only time solution that are not present in the backward difference 
form with  ߛ ൌ 1. Introducing 

ܷ݀
dݐ

ൌ
ܷ݀
ߠ݀

ߠ݀
ݐ݀

ൌ ܿሺߠሻ
ߠ݀
ݐ݀

ൌ
ܿሺߠሻ

Δݐ
ሾߠ௧ା୼௧ െ ௧ሿߠ ൌ

ܿሺߠሻ

Δݐ
ሾߠ െ .ሺA																								௧ሿߠ 41ሻ 

Into the energy balance gives 

1
Δݐ
නࢀۼ	ܿߩሾߠ௧ା୼௧ െ ௧ሿܸ݀ߠ
௏

൅ නሺસۼሻࢀ	ܓ	સߠ	ܸ݀
௏

െ නݎࢀۼ	ܸ݀
௏

൅ න ܵ݀ݍࢀۼ
ௌ೜

൅ න ߠሺ݄ࢀۼ െ 	଴ሻ݀ܵߠ
ௌ೓

			

൅ න ߠሾሺܣࢀۼ െ ௭ሻସߠ െ ሺߠ଴ െ ௭ሻସሿ݀ܵߠ
ௌೝ

ൌ 0.																																																																						ሺA. 42ሻ 

This nonlinear system is solved by a modified Newton method. The method is called modified because the 
tangent matrix (or the Jacobian matrix) – that is, the rate of change of the first term with respect to ߠ௧ା୼௧ – 
is not formed exactly. 

The discretized finite element equations for heat transfer problems have the following finite form: 

ሾ۹ࢉ ൅ ࢑۹ ൅ ࢎ۹ ൅ ሿઢી௘ࢇ۹ ൌ ࢉ܀ ൅ ࢑܀ ൅ ࢘܀ ൅ ࢗ܀ ൅ ࢎ܀ ൅ .ሺA																				ࢇ܀ 43ሻ 

Knowing that the conductivity term gives the Jacobian distribution 

࢑۹ ൌ
߲
߲ી

ቈනሺસۼሻࢀ	ܓ	સߠ	ܸ݀
௏

቉ ൌ නሺસۼሻࢀ	ܓ	સۼ	ܸ݀
௏

൅ නሺસۼሻࢀ 	
ܓ߲
ߠ߲

	સߠ	ۼ	ܸ݀
௏

									ሺA. 44ሻ 
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With the Jacobian terms defined as 

ࢉ۹ ൌ
1
Δݐ
නۼࢀۼܿߩ	ܸ݀
௏

																																																														ሺA. 45ሻ 

࢑۹ ൌ නሺસۼሻࢀ	ܓ	સۼ	ܸ݀
௏

൅ නሺસۼሻࢀ 	
ܓ߲
ߠ߲

	સߠ	ۼ	ܸ݀
௏

																																ሺA. 46ሻ 

ࢎ۹ ൌ න ൤
߲݄
ߠ߲

ሺߠ െ ଴ሻߠ ൅ ݄൨ۼࢀۼ	݀ܵ
ௌ೓

																																															ሺA. 47ሻ 

ࢇ۹ ൌ න ܵ݀	ۼࢀۼଷߠܣ4
ௌೝ

																																																												ሺA. 48ሻ 

And the right-hand side residual terms 

ࢉ܀ ൌ
1
Δݐ
නࢀۼ	ܿߩሾߠ௧ା୼௧ െ ௧ሿܸ݀ߠ
௏

																																																				ሺA. 49ሻ 

࢑܀ ൌ නሺસۼሻࢀ	ܓ	સߠ	ܸ݀
௏

																																																										ሺA. 50ሻ 

࢘܀ ൌ නݎࢀۼ	ܸ݀
௏

																																																																			ሺA. 51ሻ 

ࢗ܀ ൌ න ܵ݀ݍࢀۼ
ௌ೜

																																																																	ሺA. 52ሻ 

ࢎ܀ ൌ න ߠሺ݄ࢀۼ െ 	଴ሻ݀ܵߠ
ௌ೓

																																																								ሺA. 53ሻ 

ࢇ܀ ൌ න ߠሾሺܣࢀۼ െ ଴ሻସሿ݀ܵߠ
ௌೝ

																																																						ሺA. 54ሻ 

Diffusion 

The finite element method for heat conduction can easily adapts itself to the treatment of vector variables 
for solving a set of several diffusion equations. The same discretization steps of Fourier’s law are repeated 
but are now addressed to the vector-valued equation of Fick’s law. 

۴ ൌ െ۲	׏઴																																																																						ሺA. 55ሻ 

where ۴ is the flux, ۲ is the diffusion matrix regrouping the diffusion constants for the material that are 
diffusing in the specific solvent, and ׏઴ is the concentration gradient in its vectorial form. The diffusion 
constants of a material are also referred to as ‘diffusion coefficients’ or simply ‘diffusivities’. It is 
expressed in units of length squared per unit time, such as µm2·hour-1. The negative sign of the right side 
of the equation indicates that the impurities are flowing in the direction of lower concentration. This is 
Fick's Second Law, which states that the change in impurity concentrations over time is equal to the change 
in local diffusion flux 

∂઴
∂t

ൌ െસ୘۴																																																																				ሺA. 56ሻ 

or, from Fick's first law, 

߲઴
ݐ߲

ൌ െસ୘ሺെ۲	સ઴ሻ ൌ 		સ୘ሺ۲	સ઴ሻ																																											ሺܣ. 57ሻ 
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 The diffusion equation is the partial differential equation that governs the evolution of the concentration 
field produced by a given flux. With appropriate boundary and initial conditions, the solution to this 
equation gives the time and spatial dependence of the concentration. The diffusion equation in the general 
form is given by 

߲઴
ݐ߲

൅ સ୘۴ െ ܁ ൌ 0																																																											ሺA. 58ሻ 

where ܁ is an added source or sink vector term or interior sources corresponding to the rate per unit volume 
at which diffusing material is created locally due to chemical reactions, heating, cooling, and similar 
processes. 

Using the same Galerkin finite element methodology as for the heat conduction, the weak form that 
corresponds to the weighted residual formulation for diffusion is: 

1
Δݐ
නࢀۼ	ሾ઴௧ା୼௧ െ ઴௧ሿܸ݀
௏

൅ නሺસۼሻࢀ	۲	સ઴	ܸ݀
௏

െ න܁ࢀۼ	ܸ݀
௏

 

൅න ܵ݀ܙࢀۼ
ௌ೜

െ න ۲ሺ૖ܐࢀۼ െ ૖૙ሻ݀ܵ	
ௌ೓

ൌ 0.																							ሺA. 59ሻ 

 

Implementation in the user element subroutine UEL 

 The user-element subroutine (UEL) is employed to incorporate the governing equations described in 
the previous section into the finite element code Abaqus. The UEL subroutine allow to the user to use a 
maximum number of 20 additional degrees of freedom (DOF's) in addition to the existing degrees of 
freedom (displacement, temperature, etc.). In this user-designed element, the user must provide the stiffness 
matrix composed of and as well as the residual vector (right-hand side) as needed in a context of solving 
the nonlinear system of equations using Newton-Raphson at each iteration. The user-element is written in 
Fortran language. 

 The solution is implicitly solved by the incremental method: 

 applying load in increments/steps: t → 	t ൅ Δt 
 stepping to final time t final in time steps Δt and solving for each step 

 drop “e” for convenience 

We apply the Newton-Raphson method to the following set of nonlinear equations 

۵௧ା୼௧ ൌ ۵൫ܝ௧ା୼௧, ી௧ା୼௧,૖௧ା୼௧൯ ൌ ૙ 

۶௧ା୼௧ ൌ ۶൫ી௧ା୼௧,૖௧ା୼௧൯ ൌ ૙																																																						ሺܣ. 60ሻ 

۴௧ା୼௧ ൌ ۴൫ી௧ା୼௧,૖௧ା୼௧൯ ൌ ૙ 

where 

۵௧ା୼௧ ൌ න۰்ોሺܝ௧ା୼௧, ી௧ା୼௧,૖௧ା୼௧ሻ	ܸ݀
௏

െ නܜ்ۼ	݀ܵ
ௌ

൅ න܎்ۼ	ܸ݀
௏

ൌ 0													ሺA. 61ሻ 

۶௧ା୼௧ ൌ
1
Δݐ
නࢀۼ	ܿߩሾߠ௧ା୼௧ െ ௧ሿܸ݀ߠ
௏

൅ නሺસۼሻࢀ	ܓ	સߠ		ܸ݀
௏

െ නݎࢀۼ	ܸ݀
௏

െ න ܵ݀ݍࢀۼ
ௌ೜

 

൅න ߠሺ݄ࢀۼ െ 	଴ሻ݀ܵߠ
ௌ೎

൅ න ߠሾሺܣࢀۼ െ ௭ሻସߠ െ ሺߠ଴ െ ௭ሻସሿ݀ܵߠ
ௌೝ

ൌ 0											ሺA. 62ሻ 
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۴௧ା୼௧ ൌ
1
Δݐ
නࢀۼ	ሾ઴௧ା୼௧ െ ઴௧ሿܸ݀
௏

൅ නሺસۼሻࢀ	۲	સ઴	ܸ݀
௏

െ න܁ࢀۼ	ܸ݀
௏

൅ න ܵ݀ܙࢀۼ
ௌ೜

						ሺA. 63ሻ 

Assuming the state is known at the time t, we solve the equation at the time and for the ݇௧௛ iteration, the 
Newton-Raphson method gives the solution: 

۵௧ା୼௧ ൅
߲۵௧ା୼௧

ܝ߲
௞ାଵܝߜ	 ൅

߲۵௧ା୼௧

߲ી
ી௞ାଵߜ	 ൅

߲۵௧ା୼௧

߲૖
૖௞ାଵߜ	 ൌ ૙ 

۶௧ା୼௧ ൅
߲۶௧ା୼௧

ܝ߲
௞ାଵܝߜ	 ൅

߲۶௧ା୼௧

߲ી
ી௞ାଵߜ	 ൅

߲۶௧ା୼௧

߲૖
૖௞ାଵߜ	 ൌ ૙																							ሺA. 64ሻ 

۴௧ା୼௧ ൅
߲۴௧ା୼௧

߲ી
ી௞ାଵߜ	 ൅

߲۴௧ା୼௧

߲૖
૖௞ାଵߜ	 ൌ ૙ 

The unknowns of the above system of equations are 

௞ାଵܝߜ ൌ ௞ܝ
௧ା୼௧ െ ௞ܝ

௧  

ી௞ାଵߜ ൌ ી௞
௧ା୼௧ െ ી௞

௧ 																																																																ሺA. 65ሻ 

૖௞ାଵߜ ൌ ૖௞
௧ା୼௧ െ ૖௞

௧  

The linear system of equations to solve at each iteration until convergence is 

۹	 ൝
௞ାଵܝߜ
ી௞ାଵߜ
૖௞ାଵߜ

ൡ ൌ ۿ							with						ۿ ൌ ൝
െ۵௧ା୼௧

െ۶௧ା୼௧

െ۴௧ା୼௧
ൡ																																										ሺA. 66ሻ 

where the unsymmetric stiffness matrix of the system is 

۹ ൌ ቎

ܝܝ۹ ીܝ۹ ૖ܝ۹

۹ીܝ ۹ીી ۹ી૖

0 ۹૖ી ۹૖૖

቏ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
۵ࣔۍ

࢚ାઢ࢚

ܝࣔ
	

࢚ାઢ࢚۵ࣔ

ࣔી
࢚ାઢ࢚۵ࣔ

ࣔ૖
࢚ାઢ࢚۶ࣔ

ܝࣔ
࢚ାઢ࢚۶ࣔ

ࣔી
࢚ାઢ࢚۶ࣔ

ࣔ૖

૙
࢚ାઢ࢚۴ࣔ

ࣔી
࢚ାઢ࢚۴ࣔ

ࣔ૖ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

																																									ሺA. 67ሻ 

For example, using the stress update algorithm, the stiffness matrix term ۹࢛࢛ is defined by 

࢛࢛۹ ൌ
࢚ାઢ࢚۵ࣔ

ܝࣔ
ൌ

߲
ܝ߲

ቈන۰்ો൫ܝ௧ା୼௧൯ܸ݀
௏

቉ 

ൌ න ۰்
߲ો൫ܝ௞

௧ା୼௧, ી௧ା୼௧, ൯
ܝ߲

ቤ
ሺܝೖ

೟శ౴೟ሻ

߲ઽ
ܝ߲

	ܸ݀
௏

ൌ න۰்۳۰	ܸ݀
௏

										ሺA. 68ሻ 

where  

۳ ൌ
߲ો
߲ઽ
ฬ
ሺܝೖ

೟శ౴೟ሻ
																																																																														ሺA. 69ሻ 

is the Jacobian of the constitutive law, also called the tangent consistent matrix. The two terms that must 
be defined in the user elements subroutine UEL are the stiffness matrix ۹ and the right hand side ۿ.  

ીܝ۹ ൌ
࢚ାઢ࢚۵ࣔ

ࣔી
ൌ

߲
߲ી

ቈන۰்ો൫ܝ௧ା୼௧, ી௧ା୼௧,૖௧ା୼௧൯ܸ݀
௏

቉																 
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ൌ න ۰்
߲ો൫ܝ௞

௧ା୼௧, ௧ା୼௧,૖௧ା୼௧൯ߠ
ߠ߲

ቤ
ሺીೖ
೟శ౴೟ሻ

௧ା୼௧ߠ߲

߲ી
	ܸ݀

௏
ൌ න ۰்

߲ો
ߠ߲

ܸ݀	ۼ
௏

									ሺA. 70ሻ 

 

૖ܝ۹ ൌ
࢚ାઢ࢚۵ࣔ

ࣔ૖
ൌ

߲
߲ી

ቈන۰்ો൫ܝ௧ା୼௧, ી௧ା୼௧,૖௧ା୼௧൯ܸ݀
௏

቉																 

ൌ න ۰்
߲ો൫ܝ௞

௧ା୼௧, ௧ା୼௧,૖௧ା୼௧൯ߠ
߲૖

ቤ
ሺીೖ
೟శ౴೟ሻ

߲૖௧ା୼௧

߲૖
	ܸ݀

௏
ൌ න ۰்

߲ો
߲૖

ܸ݀	ۼ
௏

											ሺܣ. 71ሻ 

The Jacobian term for the heat transfer equation is defined by 

۹ીી ൌ
࢚ାઢ࢚۶ࣔ

ࣔી
ൌ ࢉ۹ ൅ ࢑۹ ൅ ࢎ۹ ൅ .ሺA																																													ࢇ۹ 72ሻ 

with 

ࢉ۹ ൌ
1
Δݐ
නۼࢀۼܿߩ	ܸ݀
௏

																																																												ሺA. 73ሻ 

࢑۹ ൌ නሺસۼሻࢀ	ܓ	સۼ	ܸ݀
௏

൅ නሺસۼሻࢀસۼ	
ܓ߲
ߠ߲

	ીۼ	ܸ݀
௏

																																				ሺA. 74ሻ 

ࢎ۹ ൌ න ൤
߲݄
ߠ߲

ሺߠ െ ଴ሻߠ ൅ ݄൨ۼࢀۼ	݀ܵ
ௌ೓

																																													ሺA. 75ሻ 

ࢇ۹ ൌ න ܵ݀	ۼࢀۼଷߠܣ4
ௌೝ

																																																											ሺA. 76ሻ 

Finally for the Jacobian terms in the diffusion equation. 

۹૖૖ ൌ
࢚ାઢ࢚۴ࣔ

ࣔ૖
ൌ ࢚۹ ൅ .ሺA																																																					ࢊ۹ 77ሻ 

with 

࢚۹ ൌ
1
Δݐ
නۼࢀۼ	ܸ݀
௏

																																																											ሺA. 78ሻ 

ࢊ۹ ൌ නሺસۼሻࢀ	۲	સۼ	ܸ݀
௏

																																																							ሺA. 79ሻ 

ࢎ۹ ൌ න ൤
߲݄
߲߶

ሺ߶ െ ߶଴ሻ ൅ ݄൨ۼࢀۼ	݀ܵ
ௌ೓

																																											ሺA. 80ሻ 

۹૖ી ൌ
࢚ାઢ࢚۴ࣔ

ࣔી
ൌ

߲
߲ી

ቈනሺસۼሻࢀ	۲	સ઴	ܸ݀
௏

቉ 

ൌ නሺસۼሻࢀસ઴
߲۲
ߠ߲
ฬ
ሺીೖ
೟శ౴೟ሻ

௧ା୼௧ߠ߲

߲ી
	ܸ݀

௏
ൌ නሺસۼሻࢀસ઴

߲۲
ߠ߲

ܸ݀	ۼ
௏

						ሺA. 82ሻ 

If the volumetric heat generation is caused by mechanical working and diffusion mechanisms of the 
material, the following Jacobian terms must defined 
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۹ીܝ ൌ
࢚ାઢ࢚۶ࣔ

ܝࣔ
ൌ

߲
ܝ߲

ቈනݎ൫ܝ௧ା୼௧൯ܸ݀
௏

቉																 

ൌ න ்ۼ ݎ߲
ܝ߲
ฬ
ሺܝೖ

೟శ౴೟ሻ
	ܸ݀

௏
ൌ න ்ۼ ݎ߲

߲ઽ
ฬ
ሺܝೖ

೟శ౴೟ሻ
۰	ܸ݀

௏
																																	ሺA. 83ሻ 

 

۹ી૖ ൌ
࢚ାઢ࢚۶ࣔ

ࣔ૖
ൌ

߲
߲૖

ቈනݎ൫૖௧ା୼௧൯ܸ݀
௏

቉																 

ൌ න ்ۼ ݎ߲
߲૖

ฬ
ሺܝೖ

೟శ౴೟ሻ
	ܸ݀

௏
ൌ න ்ۼ ݎ߲

߲૖
ฬ
ሺܝೖ

೟శ౴೟ሻ
ܸ݀	ۼ

௏
																																ሺA. 84ሻ 
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Applendix B 
 

Implementation in UEL Subroutine 
 
 
 

A. Equilibrium 
1. Initialization of material stiffness matrix DDSDDE and Element Stiffness Matrix AMATRX for 

LFLAGS(3)=4 

۳ ൌ
߲ો
߲ઽ
ฬ
ሺܝೖ

೟శ౴೟ሻ
ൌ ۷							and							۹ ൌ ۷																																													ሺB. 1ሻ 

2. Initialization of Stiffness Matrix AMATRX and Right-Hand Side RHS 

۹ ൌ ۷							and							۴ ൌ ۷																																																									ሺB. 2ሻ 

3. Calculation of current coordinates ܠ as function of initial coordinates ܆ and displacements ܝ 

ܠ ൌ ܆ ൅ .ሺB																																																																				ܝ 3ሻ 

4. Loop over integrations points 

a. Evaluate shape functions and derivatives 

௜ܰ ൌ ௜ܰሺݎ, 			and		ሻݏ
߲ ௜ܰ

ݎ߲
,
߲ ௜ܰ

ݎ߲
				in	2D																																															ሺB. 4ሻ 

௜ܰ ൌ ௜ܰሺݎ, ,ݏ 			and		ሻݐ
߲ ௜ܰ

ݎ߲
,
߲ ௜ܰ

ݎ߲
,
߲ ௜ܰ

ݐ߲
				in	3D																																					ሺB. 5ሻ 

b. Compute coordinates at the integration points 

For small displacement analysis, i.e. LFLAGS(2) = 0, use ܆ 
For large displacement analysis, i.e. LFLAGS(2) = 1, use ܠ 

ݔ ൌ ෍ ௜ܰሺݎ, ௜ݔሻݏ

௡௡௢ௗ௘

௜ୀଵ

			and			ݕ ൌ ෍ ௜ܰሺݎ, ௜ݕሻݏ

௡௡௢ௗ௘

௜ୀଵ

					in	2D																													ሺB. 6ሻ 

ݔ ൌ ෍ ௜ܰሺݎ, ,ݏ ௜ݔሻݐ

௡௡௢ௗ௘

௜ୀଵ

ݕ			, ൌ ෍ ௜ܰሺݎ, ,ݏ ௜ݕሻݐ

௡௡௢ௗ௘

௜ୀଵ

			and			ݖ ൌ ෍ ௜ܰሺݎ, ,ݏ ௜ݖሻݐ

௡௡௢ௗ௘

௜ୀଵ

			in	3D			ሺB. 7ሻ 

In matrix form, we have 

ܠ ൌ ࢋܠۼ	 ൌ ቂ
ݔ
ቃݕ ൌ ൤ ଵܰ 0

0 ଵܰ

ଶܰ 0
0 ଶܰ

⋯ ௡ܰ 0
0 ௡ܰ

൨

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵݔ
ଵݕ
ଶݔ
ଶݕ
⋮
௡ݔ
ے௡ݕ
ۑ
ۑ
ۑ
ۑ
ې

							in	2D														ሺB. 8ሻ 
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ܠ ൌ ࢋܠۼ	 ൌ ቈ
ݔ
ݕ
ݖ
቉ ൌ ൥

ଵܰ 0 0
0 ଵܰ 0
0 0 ଵܰ

ଶܰ 0 0
0 ଶܰ 0
0 0 ଶܰ

⋯
௡ܰ 0 0
0 ௡ܰ 0
0 0 ௡ܰ

൩

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵݔ
ଵݕ
ଵݖ
ଶݔ
ଶݕ
ଶݖ
⋮
௡ݔ
௡ݕ
ے௡ݖ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

				in	3D						ሺB. 9ሻ 

c. Compute Jacobian ۸, its determinant det	۸, and its inverse ሾ۸ሿି૚ 

۸ ൌ ൦

ݔ߲
ݎ߲

ݕ߲
ݎ߲

ݔ߲
ݏ߲

ݕ߲
ݏ߲

൪ ൌ

ۏ
ێ
ێ
ێ
ێ
෍ۍ

߲ ௜ܰ

ݎ߲
௜ݔ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݎ߲
௜ݕ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݏ߲
௜ݔ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݏ߲
௜ݕ

௡

௜ୀଵ ے
ۑ
ۑ
ۑ
ۑ
ې

				in	2D																	ሺB. 10ሻ 

۸ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ݔ߲
ݎ߲

ݕ߲
ݎ߲

ݖ߲
ݎ߲

ݔ߲
ݏ߲

ݕ߲
ݏ߲

ݖ߲
ݏ߲

ݔ߲
ݐ߲

ݕ߲
ݐ߲

ݖ߲
ےݐ߲
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
෍ۍ

߲ ௜ܰ

ݎ߲
௜ݔ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݎ߲
௜ݕ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݎ߲
௜ݖ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݏ߲
௜ݔ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݏ߲
௜ݕ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݏ߲
௜ݖ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݐ߲
௜ݔ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݐ߲
௜ݕ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݐ߲
௜ݖ

௡

௜ୀଵ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

				in	3D									ሺB. 11ሻ 

 
d. Form ۰-Matrix 

If the inverse of the Jacobian matrix ۸ can be determined, the followings equations 

൦

߲ ௜ܰ

ݎ߲
߲ ௜ܰ

ݏ߲

൪ ൌ ൦

ݔ߲
ݎ߲

ݕ߲
ݎ߲

ݔ߲
ݏ߲

ݕ߲
ݏ߲

൪

ۏ
ێ
ێ
ۍ
߲ ௜ܰ

ݔ߲
߲ ௜ܰ

ݕ߲ ے
ۑ
ۑ
ې
						in	2D																																			ሺB. 11ሻ 

ۏ
ێ
ێ
ێ
ێ
ۍ
߲ ௜ܰ

ݎ߲
߲ ௜ܰ

ݏ߲
߲ ௜ܰ

ݐ߲ ے
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ݔ߲
ݎ߲

ݕ߲
ݎ߲

ݖ߲
ݎ߲

ݔ߲
ݏ߲

ݕ߲
ݏ߲

ݖ߲
ݏ߲

ݔ߲
ݐ߲

ݕ߲
ݐ߲

ݖ߲
ےݐ߲
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ௜ܰ

ݔ߲
߲ ௜ܰ

ݕ߲
߲ ௜ܰ

ݖ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

						in	3D																															ሺB. 12ሻ 

can be solved for the partial derivatives of the interpolation functions with respect to the 
global coordinates to obtain 

ۏ
ێ
ێ
ۍ
߲ ௜ܰ

ݔ߲
߲ ௜ܰ

ݕ߲ ے
ۑ
ۑ
ې
ൌ ሾ۸ሿିଵ ൦

߲ ௜ܰ

ݎ߲
߲ ௜ܰ

ݏ߲

൪ ൌ ൤
ଵଵܫ ଵଶܫ
ଶଵܫ ଶଶܫ

൨ ൦

߲ ௜ܰ

ݎ߲
߲ ௜ܰ

ݏ߲

൪ 						in	2D																									ሺB. 13ሻ 
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ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ௜ܰ

ݔ߲
߲ ௜ܰ

ݕ߲
߲ ௜ܰ

ݖ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ ሾ۸ሿିଵ

ۏ
ێ
ێ
ێ
ێ
ۍ
߲ ௜ܰ

ݎ߲
߲ ௜ܰ

ݏ߲
߲ ௜ܰ

ݐ߲ ے
ۑ
ۑ
ۑ
ۑ
ې

ൌ ൥
ଵଵܫ ଵଶܫ ଵଷܫ
ଶଵܫ ଶଶܫ ଶଷܫ
ଷଵܫ ଷଶܫ ଷଷܫ

൩

ۏ
ێ
ێ
ێ
ێ
ۍ
߲ ௜ܰ

ݎ߲
߲ ௜ܰ

ݏ߲
߲ ௜ܰ

ݐ߲ ے
ۑ
ۑ
ۑ
ۑ
ې

						in	3D																								ሺB. 14ሻ 

with the terms of the inverse of the Jacobian matrix denoted ܫ௜௝ for convenience. The 
equation a can be used to obtain the partial derivatives of the field variable with respect to 
the global coordinates, as required in discretizing a governing differential equation by the 
finite element method. 

The ۰ matrix (strain-displacement) for an element corresponds to 

۰ ൌ ሾ۰૚ ۰૛ ⋯ .ሺB																																																ሿ࢔۰ 15ሻ 

࢏۰ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ௜ܰ

ݔ߲
0

0
߲ ௜ܰ

ݕ߲
߲ ௜ܰ

ݕ߲
߲ ௜ܰ

ݔ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

				in	2D					and						۰࢏ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ௜ܰ

ݔ߲
0 0

0
߲ ௜ܰ

ݕ߲
0

0 0
߲ ௜ܰ

ݖ߲
߲ ௜ܰ

ݕ߲
߲ ௜ܰ

ݔ߲
0

߲ ௜ܰ

ݖ߲
0

߲ ௜ܰ

ݔ߲

0
߲ ௜ܰ

ݖ߲
߲ ௜ܰ

ݕ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

				in	3D								ሺB. 16ሻ 

For convenience, the ۰ matrix is stored as following 

ܜ܉ܕ۰ ൌ ൦

ଵଵܤ ଵଶܤ
ଶଵܤ ଶଶܤ

⋮
௡ଵܤ ௡ଶܤ

൪ 					in	2D																																									ሺB. 17ሻ 

ܜ܉ܕ۰ ൌ ൦

ଵଵܤ ଵଶܤ ଵଷܤ
ଶଵܤ ଶଶܤ ଶଷܤ

⋮
௡ଵܤ ௡ଶܤ ௡ଷܤ

൪ 							in	3D																																ሺB. 18ሻ 

with					ܤ௜ଵ ൌ
߲ ௜ܰ

ݔ߲
, ௜ଶܤ ൌ

߲ ௜ܰ

ݕ߲
				and			ܤ௜ଷ ൌ

߲ ௜ܰ

ݖ߲
.																					ሺB. 19ሻ 

e. Calculate incremental strains 

The strain approximation is given by the relation 

ઢઽ ൌ ۰	ઢܝ																																																										ሺB. 20ሻ 
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ઢઽ ൌ ൥
Δߝଵଵ
Δߝଶଶ
Δߝଵଶ

൩ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
0

0
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݔ߲

⋯

߲ ௡ܰ

ݔ߲
0

0
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݔ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
Δݑ௫ଵ

Δݑ௬ଵ

⋮
Δݑ௫௡

Δݑ௬௡ے
ۑ
ۑ
ۑ
ۑ
ې

				in	2D												ሺB. 21ሻ 

ઢઽ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
Δߝଵଵ
Δߝଶଶ
Δߝଷଷ
Δߝଵଶ
Δߝଵଷ
Δߝଶଷے

ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
0 0

0
߲ ଵܰ

ݕ߲
0

0 0
߲ ଵܰ

ݖ߲
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݔ߲
0

߲ ଵܰ

ݖ߲
0

߲ ଵܰ

ݔ߲

0
߲ ଵܰ

ݖ߲
߲ ଵܰ

ݕ߲

⋯

߲ ௡ܰ

ݔ߲
0 0

0
߲ ௡ܰ

ݕ߲
0

0 0
߲ ௡ܰ

ݖ߲
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݔ߲
0

߲ ௡ܰ

ݖ߲
0

߲ ௡ܰ

ݔ߲

0
߲ ௡ܰ

ݖ߲
߲ ௡ܰ

ݕ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
Δݑ௫ଵ

Δݑ௬ଵ

Δݑ௭ଵ

⋮
Δݑ௫௡

Δݑ௬௡

Δݑ௭௡ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

				in	3D						ሺB. 22ሻ 

 

f. Calculate deformation gradients 

The fundamental deformation gradient tensor F is interpolated over an element by 
differentiating the equation 

u ൌ෍N୧u୧

୬

୧ୀଵ

																																																									ሺB. 22ሻ 

with respect to the initial coordinates to give an explicit matrix form 

۴ ൌ ൤
ଵଵܨ ଵଶܨ
ଶଵܨ ଶଶܨ

൨ 				in	2D																																													ሺB. 23ሻ 

۴ ൌ ൥
ଵଵܨ ଵଶܨ ଵଷܨ
ଶଵܨ ଶଶܨ ଶଷܨ
ଷଵܨ ଷଶܨ ଷଷܨ

൩ 				in	3D																																										ሺB. 24ሻ 

with	ܨ௜௝
௢௟ௗ ൌ ෍൫ݑ௜

௞ െ Δݑ௜
௞൯
߲ ௞ܰ

௝ݔ߲

௡

௞ୀଵ

				and					ܨ௜௝
௡௘௪ ൌ ෍ݑ௜

௞ ߲ ௞ܰ

௝ݔ߲

௡

௞ୀଵ

									ሺB. 25ሻ 

g. Material routine for computing stresses ો and the material stiffness ߲ો/߲ઽ using a user 
material subroutine UMAT. 

h. Store strains ઽ, stresses ો, and other internal state variables in array SVARS 
i. Form stiffness matrix ۹ ൌ  at internal point contribution ࢛࢛۹

The stiffness matrix in the user element subroutine correspond to 

۹ ൌ න ۰்۳۰	ܸ݀
௏೐

																																																						ሺB. 26ሻ 

which has the following form 
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۹ ൌ

௫ଵݑ 		௬ଵݑ	 ௫ଶݑ ⋯ ௬௡ݑ			

ۏ
ێ
ێ
ێ
ۍ
ଵଵܭ ଵଶܭ ଵଷܭ
ଶଵܭ
ଷଵܭ

ଶଶܭ
ଶଷܭ

ଶଷܭ
ଷଷܭ

⋯
ଵ௡ܭ
ଶ௡ܭ
ଷ௡ܭ

⋮ ⋱ ⋮
௡ଵܭ ௡ଶܭ ௡ଷܭ ⋯ ے௡௡ܭ

ۑ
ۑ
ۑ
ې

௫ଵݑ

௬ଵݑ

௫ଶݑ

⋮
௬௡ݑ

							in	2D																					ሺB. 27ሻ 

۹ ൌ

௫ଵݑ ଵ	௬ݑ	 	 ௭ଵݑ ௫ଶݑ	 ⋯ ௬௡ݑ			

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵଵܭ ଵଶܭ ଵଷܭ ଵସܭ
ଶଵܭ
ଷଵܭ
ସଵܭ

ଶଶܭ
ଶଷܭ
ସଶܭ

ଶଷܭ ଶସܭ
ଷଷܭ
ସଷܭ

ଷସܭ
ସସܭ

⋯

ଵ௡ܭ
ଶ௡ܭ
ଷ௡ܭ
ସ௡ܭ

⋮ ⋱ ⋮
௡ଵܭ ௡ଶܭ ௡ଷܭ ௡ସܭ ⋯ ے௡௡ܭ

ۑ
ۑ
ۑ
ۑ
ې

௫ଵݑ

௬ଵݑ

௭ଵݑ

௫ଶݑ

⋮
௭௡ݑ

							in	3D																		ሺB. 28ሻ 

The individual entries (in 2D) of the stiffness matrix may be computed as follows 

ଵଵܭ ൌ න ۰௨ೣభ
ࢀ ۳۰௨ೣభ	ܸ݀

௏೐
 

ଵଶܭ ൌ න ۰௨ೣభ
ࢀ ۳۰௨೤భ 	ܸ݀

௏೐
 

ଵଷܭ ൌ න ۰௨ೣమ
ࢀ ۳۰௨ೣభ	ܸ݀

௏೐
																																														ሺB. 29ሻ 

ଶଵܭ ൌ න ۰௨೤భ
ࢀ ۳۰௨ೣభ	ܸ݀

௏೐
 

ଶଶܭ ൌ න ۰௨೤భ
ࢀ ۳۰௨೤భ 	ܸ݀

௏೐
 

Where we denote the columns of the ۰-matrix as 

۰௨ೣభ ൌ

ۏ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
0
߲ ଵܰ

ݕ߲ ے
ۑ
ۑ
ۑ
ې

; 					۰௨೤భ ൌ

ۏ
ێ
ێ
ێ
ۍ
0
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݔ߲ ے
ۑ
ۑ
ۑ
ې

; 				and	so	on… .			in	2D																			ሺB. 30ሻ 

۰௨ೣభ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
0
0
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݖ߲
0 ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

; 					۰௨೤భ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0
߲ ଵܰ

ݕ߲
0
߲ ଵܰ

ݔ߲
0
߲ ଵܰ

ݖ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

; 				۰௨೥భ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0
0
߲ ଵܰ

ݖ߲
0
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

; 				and	so	on… .			in	3D								ሺB. 31ሻ 

Using the Gauss quadrature, the integration over the element is approximated by 
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۹ ൌ෍෍ ௜ܹ ௝ܹܬሺݎ௜, ,௜ݎ௝ሻ۰்ሺݏ ,௜ݎ௝ሻ۳ሺݏ ,௜ݎ௝ሻ۰ሺݏ ௝ሻݏ

௡

௝ୀଵ

௠

௜ୀଵ

					in	2D											ሺB. 31ሻ 

۹ ൌ෍෍෍ ௜ܹ ௝ܹ ௞ܹܬ൫ݎ௜, ,௝ݏ ,௜ݎ௞൯۰்൫ݐ ,௝ݏ ,௜ݎ௞൯۳൫ݐ ,௝ݏ ,௜ݎ௞൯۰൫ݐ ,௝ݏ ௞൯ݐ

௡

௞ୀଵ

௠

௝ୀଵ

௟

௜ୀଵ

				in	3D			ሺB. 32ሻ 

 

where ௜ܹ, ௝ܹ and ௞ܹ are Gaussian weighting factors, ݈, m, and ݊ are the number of 

sampling points or Gauss points, and ܬ ൌ  .ࡶ is the determinant of the Jacobian |ࡶ	|

j. Form right-hand side residual ۵ሺܝሻ at internal point contribution, which is defined by 

۵ሺܝሻ ൌ න ۰்ોܸ݀
௏೐

െ ࣂ۴ െ ࢚۴ ൅ .ሺB																																			ࢌ۴ 33ሻ 

۵ሺܝሻ ൌ න ۰்ોܸ݀
௏೐

െ න ۰்۳ઽ࢚	ܸ݀
௏೐

െ න ܵ݀	ܜ்ۼ
ௌ೐

൅ න ܸ݀	܎்ۼ
௏೐

													ሺB. 34ሻ 

 

The product ۰்ો in the first integral term is defined by 

۰்ો ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
0

߲ ଵܰ

ݕ߲

0
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݔ߲
⋮

߲ ௡ܰ

ݔ߲
0

߲ ௡ܰ

ݕ߲

0
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݔ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

൥
ଵଵߪ
ଶଶߪ
ଵଶߪ

൩ 				in	2D																										ሺB. 35ሻ 

۰்ો ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
0 0

0
߲ ଵܰ

ݕ߲
0

0 0
߲ ଵܰ

ݖ߲

߲ ଵܰ

ݕ߲
߲ ଵܰ

ݖ߲
0

߲ ଵܰ

ݔ߲
0

߲ ଵܰ

ݖ߲

0
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲
⋮

߲ ௡ܰ

ݔ߲
0 0

0
߲ ௡ܰ

ݕ߲
0

0 0
߲ ௡ܰ

ݖ߲

߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݖ߲
0

߲ ௡ܰ

ݔ߲
0

߲ ௡ܰ

ݖ߲

0
߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵଵߪ
ଶଶߪ
ଷଷߪ
ଵଶߪ
ଵଷߪ
ےଶଷߪ

ۑ
ۑ
ۑ
ۑ
ې

				in	3D												ሺB. 36ሻ 

Using the Gauss quadrature, the integration over the element is approximated by 
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න ۰்ોܸ݀
௏೐

ൌ෍෍ ௜ܹ ௝ܹܬሺݎ௜, ,௜ݎ௝ሻ۰்ሺݏ ,௜ݎ௝ሻોሺݏ ௝ሻݏ

௡

௝ୀଵ

௠

௜ୀଵ

					in	2D													ሺB. 37ሻ 

න ۰்ોܸ݀
௏೐

ൌ෍෍෍ ௜ܹ ௝ܹ ௞ܹܬ൫ݎ௜, ,௝ݏ ,௜ݎ௞൯۰்൫ݐ ,௝ݏ ,௜ݎ௞൯ો൫ݐ ,௝ݏ ௞൯ݐ

௡

௞ୀଵ

௠

௝ୀଵ

௟

௜ୀଵ

				in	3D							ሺB. 38ሻ 

The product ܜ்ۼ in the integral ۴࢚ is defined by 

ܜ்ۼ ൌ

ۏ
ێ
ێ
ێ
ۍ ଵܰ 0
0 ଵܰ
⋮

௡ܰ 0
0 ௡ܰے

ۑ
ۑ
ۑ
ې

൤
௫ݐ
௬ݐ
൨ 				in	2D																																							ሺB. 39ሻ 

ܜ்ۼ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ଵܰ 0 0
0 ଵܰ 0
0 0 ଵܰ

⋮
௡ܰ 0 0
0 ௡ܰ 0
0 0 ௡ܰے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

൥
௫ݐ
௬ݐ
௭ݐ
൩ 				in	3D																																			ሺB. 40ሻ 

where ۼ are the shape functions for the edge in 2D and the surface in 3D to which the 
surface forces ܜ are applied. Therefore coordinates of Gauss points must be redefined. 

Using the Gauss quadrature, the integration over the element is approximated by 

࢚۴ ൌ න ܵ݀ܜ்ۼ
ௌ೐

ൌ෍ ௜ܹܬሺݎ௜ሻ۰்ሺݎ௜ሻોሺݎ௜ሻ

௡

௜ୀଵ

					in	2D																						ሺB. 41ሻ 

࢚۴ ൌ න ܵ݀ܜ்ۼ
ௌ೐

ൌ෍෍ ௜ܹ ௝ܹܬ൫ݎ௜, ,௜ݎ௝൯۰்൫ݏ ,௜ݎ൫ܜ௝൯ݏ ௝൯ݏ

௡

௝ୀଵ

௠

௜ୀଵ

				in	3D														ሺB. 42ሻ 

The product ܎்ۼ in the integral ۴ࢌ is defined by 

܎்ۼ ൌ

ۏ
ێ
ێ
ێ
ۍ ଵܰ 0
0 ଵܰ
⋮

௡ܰ 0
0 ௡ܰے

ۑ
ۑ
ۑ
ې

൤ ௫݂

௬݂
൨ 				in	2D																																						ሺB. 43ሻ 

܎்ۼ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ଵܰ 0 0
0 ଵܰ 0
0 0 ଵܰ

⋮
௡ܰ 0 0
0 ௡ܰ 0
0 0 ௡ܰے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

቎
௫݂

௬݂

௭݂

቏ 				in	3D																																		ሺB. 44ሻ 

Using the Gauss quadrature, the integration over the element is approximated by 
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ࢌ۴ ൌ නܸ݀܎்ۼ
௏

ൌ෍෍ ௜ܹ ௝ܹܬሺݎ௜, ,௜ݎ௝ሻ۰்ሺݏ ,௜ݎ௝ሻોሺݏ ௝ሻݏ

௡

௝ୀଵ

௠

௜ୀଵ

					in	2D													ሺB. 45ሻ 

ࢌ۴ ൌ නܸ݀܎்ۼ
௏

ൌ෍෍෍ ௜ܹ ௝ܹ ௞ܹܬ൫ݎ௜, ,௝ݏ ,௜ݎ௞൯۰்൫ݐ ,௝ݏ ,௜ݎ௞൯ો൫ݐ ,௝ݏ ௞൯ݐ

௡

௞ୀଵ

௠

௜ୀଵ

௟

௜ୀଵ

				in	3D				ሺB. 46ሻ 

In case of thermal expansion, the product ۰்۳ઽ࢚	n the integral ۴ࣂ is defined by 

۰்۳ઽ࢚ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
0

߲ ଵܰ

ݕ߲

0
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݔ߲
⋮

߲ ௡ܰ

ݔ߲
0

߲ ௡ܰ

ݕ߲

0
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݔ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

Δܶߙܧ
1 െ ߥ2

൥
1
1
0
൩ 				in	2D																			ሺB. 47ሻ 

۰்۳ઽ࢚ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
0 0

0
߲ ଵܰ

ݕ߲
0

0 0
߲ ଵܰ

ݖ߲

߲ ଵܰ

ݕ߲
߲ ଵܰ

ݖ߲
0

߲ ଵܰ

ݔ߲
0

߲ ଵܰ

ݖ߲

0
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲
⋮

߲ ௡ܰ

ݔ߲
0 0

0
߲ ௡ܰ

ݕ߲
0

0 0
߲ ௡ܰ

ݖ߲

߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݖ߲
0

߲ ௡ܰ

ݔ߲
0

߲ ௡ܰ

ݖ߲

0
߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

Δܶߙܧ
1 െ ߥ2

ۏ
ێ
ێ
ێ
ێ
ۍ
1
1
1
0
0
ے0
ۑ
ۑ
ۑ
ۑ
ې

				in	3D											ሺB. 48ሻ 

Using the Gauss quadrature, the integration over the element is approximated by 

ࣂ۴ ൌ න۰்۳ઽܸ࢚݀
௏

ൌ෍෍ ௜ܹ ௝ܹܬሺݎ௜, ,௜ݎ௝ሻ۰்ሺݏ ,௜ݎሺ࢚௝ሻ۳ઽݏ ௝ሻݏ

௡

௝ୀଵ

௠

௜ୀଵ

					in	2D										ሺB. 49ሻ 

ࣂ۴ ൌ න۰்۳ઽܸ࢚݀
௏

ൌ෍෍෍ ௜ܹ ௝ܹ ௞ܹܬ൫ݎ௜, ,௝ݏ ,௜ݎ௞൯۰்൫ݐ ,௝ݏ ,௜ݎ൫࢚௞൯۳ઽݐ ,௝ݏ ௞൯ݐ

௡

௞ୀଵ

௠

௜ୀଵ

௟

௜ୀଵ

					in	3D		ሺB. 50ሻ 

In case of (steady state or transient) fully coupled thermal-stress analysis 
(LFLAGS(1)=71,72,73), if the stresses are temperature dependent, the following Jacobian 
term must be determined 

ીܝ۹ ൌ න ۰்
߲ો
ߠ߲

ܸ݀	ۼ
௏

൅ න ۰்
Δܶߙܧ
1 െ ߥ2

૚ۼ	ܸ݀
௏

																														ሺB. 51ሻ 

with  
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۰்
߲ો
ߠ߲

	ۼ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
0

߲ ଵܰ

ݕ߲

0
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݔ߲
⋮

߲ ௡ܰ

ݔ߲
0

߲ ௡ܰ

ݕ߲

0
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݔ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵଵߪ߲
ߠ߲
ଶଶߪ߲
ߠ߲
ଵଶߪ߲
ߠ߲ ے

ۑ
ۑ
ۑ
ۑ
ې

ሾ ଵܰ	 ଶܰ	 ⋯ ௡ܰ	ሿ				in	2D					ሺB. 52ሻ 

۰்
Δܶߙܧ
1 െ ߥ2

૚ۼ	 ൌ
Δܶߙܧ
1 െ ߥ2

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
0

߲ ଵܰ

ݕ߲

0
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݔ߲
⋮

߲ ௡ܰ

ݔ߲
0

߲ ௡ܰ

ݕ߲

0
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݔ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

൥
1
1
0
൩ ሾ ଵܰ	 ଶܰ	 ⋯ ௡ܰ	ሿ				in	2D				ሺB. 53ሻ 

۰்
߲ો
ߠ߲

ۼ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
0 0

0
߲ ଵܰ

ݕ߲
0

0 0
߲ ଵܰ

ݖ߲

߲ ଵܰ

ݕ߲
߲ ଵܰ

ݖ߲
0

߲ ଵܰ

ݔ߲
0

߲ ଵܰ

ݖ߲

0
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲
⋮

߲ ௡ܰ

ݔ߲
0 0

0
߲ ௡ܰ

ݕ߲
0

0 0
߲ ௡ܰ

ݖ߲

߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݖ߲
0

߲ ௡ܰ

ݔ߲
0

߲ ௡ܰ

ݖ߲

0
߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵଵߪ߲
ߠ߲
ଶଶߪ߲
ߠ߲
ଷଷߪ߲
ߠ߲
ଵଶߪ߲
ߠ߲
ଵଷߪ߲
ߠ߲
ଶଷߪ߲
ߠ߲ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ሾ ଵܰ	 ଶܰ	 ⋯ ௡ܰ	ሿ				in	3D				ሺB. 54ሻ 

۰்
Δܶߙܧ
1 െ ߥ2

૚ۼ	 ൌ
Δܶߙܧ
1 െ ߥ2

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
0 0

0
߲ ଵܰ

ݕ߲
0

0 0
߲ ଵܰ

ݖ߲

߲ ଵܰ

ݕ߲
߲ ଵܰ

ݖ߲
0

߲ ଵܰ

ݔ߲
0

߲ ଵܰ

ݖ߲

0
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲
⋮

߲ ௡ܰ

ݔ߲
0 0

0
߲ ௡ܰ

ݕ߲
0

0 0
߲ ௡ܰ

ݖ߲

߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݖ߲
0

߲ ௡ܰ

ݔ߲
0

߲ ௡ܰ

ݖ߲

0
߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
1
1
1
0
0
ے0
ۑ
ۑ
ۑ
ۑ
ې

ሾ ଵܰ	 ଶܰ	 ⋯ ௡ܰ	ሿ	in	3D		ሺB. 55ሻ 
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Using the Gauss quadrature, the integration over the element is approximated by 

ીܝ۹ ൌ෍෍ ௜ܹ ௝ܹܬሺݎ௜, ,௜ݎ௝ሻ۰்ሺݏ ௝ሻݏ
߲ો
ߠ߲

ሺݎ௜, ,௜ݎሺۼ௝ሻݏ ௝ሻݏ

௡

௝ୀଵ

௠

௜ୀଵ

					in	2D																	ሺB. 56ሻ 

ીܝ۹ ൌ෍෍෍ ௜ܹ ௝ܹ ௞ܹܬ൫ݎ௜, ,௝ݏ ,௜ݎ௞൯۰்൫ݐ ,௝ݏ ௞൯ݐ
߲ો
ߠ߲

൫ݎ௜, ,௝ݏ ,௜ݎ൫ۼ௞൯ݐ ,௝ݏ ௞൯ݐ

௡

௞ୀଵ

௠

௜ୀଵ

௟

௜ୀଵ

					in	3D									ሺB. 57ሻ 

 

B. Heat Transfer 

1. Initialization of Element Stiffness Matrix AMATRX ۹ીી and the right-hand side ۶ሺીሻ for 
LFLAGS(1)=33 

۹ીી ൌ ૙							and							۶ሺીሻ ൌ ૙																																														ሺB. 58ሻ 

2. Determination of the Gauss points locations ሺݎ௜, ,௜ݎ௝ሻ in 2D and ሺݏ ,௝ݏ  ௞ሻ in 3Dݐ

3. Determination of the Gauss points locations ሺ ௜ܹ , ௝ܹሻ in 2D and ሺ ௜ܹ , ௝ܹ , ௞ܹሻ in 3D 

4. Loop over integrations points 

a. Evaluate shape functions and derivatives 

௜ܰ ൌ ௜ܰሺݎ, 			and		ሻݏ
߲ ௜ܰ

ݎ߲
,
߲ ௜ܰ

ݎ߲
				in	2D																																								ሺB. 59ሻ 

௜ܰ ൌ ௜ܰሺݎ, ,ݏ 			and		ሻݐ
߲ ௜ܰ

ݎ߲
,
߲ ௜ܰ

ݎ߲
,
߲ ௜ܰ

ݐ߲
				in	3D																																		ሺB. 60ሻ 

b. Compute Jacobian ۸, its determinant ܬ ൌ detሾ۸ሿ, and its inverse ሾ۸ሿି૚ 

۸ ൌ ൦

ݔ߲
ݎ߲

ݕ߲
ݎ߲

ݔ߲
ݏ߲

ݕ߲
ݏ߲

൪ ൌ

ۏ
ێ
ێ
ێ
ێ
෍ۍ

߲ ௜ܰ

ݎ߲
௜ݔ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݎ߲
௜ݕ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݏ߲
௜ݔ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݏ߲
௜ݕ

௡

௜ୀଵ ے
ۑ
ۑ
ۑ
ۑ
ې

				in	2D																			ሺB. 61ሻ 

۸ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ݔ߲
ݎ߲

ݕ߲
ݎ߲

ݖ߲
ݎ߲

ݔ߲
ݏ߲

ݕ߲
ݏ߲

ݖ߲
ݏ߲

ݔ߲
ݐ߲

ݕ߲
ݐ߲

ݖ߲
ےݐ߲
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
෍ۍ

߲ ௜ܰ

ݎ߲
௜ݔ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݎ߲
௜ݕ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݎ߲
௜ݖ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݏ߲
௜ݔ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݏ߲
௜ݕ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݏ߲
௜ݖ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݐ߲
௜ݔ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݐ߲
௜ݕ

௡

௜ୀଵ

෍
߲ ௜ܰ

ݐ߲
௜ݖ

௡

௜ୀଵ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

				in	3D									ሺB. 62ሻ 

c. Calculate the derivative of shape functions with respect to global coordinates 

If the inverse of the Jacobian matrix ۸ can be determined, the followings equations 
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൦

߲ ௜ܰ

ݎ߲
߲ ௜ܰ

ݏ߲

൪ ൌ ൦

ݔ߲
ݎ߲

ݕ߲
ݎ߲

ݔ߲
ݏ߲

ݕ߲
ݏ߲

൪

ۏ
ێ
ێ
ۍ
߲ ௜ܰ

ݔ߲
߲ ௜ܰ

ݕ߲ ے
ۑ
ۑ
ې
						in	2D																																					ሺB. 63ሻ 

ۏ
ێ
ێ
ێ
ێ
ۍ
߲ ௜ܰ

ݎ߲
߲ ௜ܰ

ݏ߲
߲ ௜ܰ

ݐ߲ ے
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ݔ߲
ݎ߲

ݕ߲
ݎ߲

ݖ߲
ݎ߲

ݔ߲
ݏ߲

ݕ߲
ݏ߲

ݖ߲
ݏ߲

ݔ߲
ݐ߲

ݕ߲
ݐ߲

ݖ߲
ےݐ߲
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ௜ܰ

ݔ߲
߲ ௜ܰ

ݕ߲
߲ ௜ܰ

ݖ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

						in	3D																																		ሺB. 64ሻ 

can be solved for the partial derivatives of the interpolation functions with respect to the 
global coordinates to obtain 

ۏ
ێ
ێ
ۍ
߲ ௜ܰ

ݔ߲
߲ ௜ܰ

ݕ߲ ے
ۑ
ۑ
ې
ൌ ሾ۸ሿିଵ ൦

߲ ௜ܰ

ݎ߲
߲ ௜ܰ

ݏ߲

൪ ൌ ൤
ଵଵܫ ଵଶܫ
ଶଵܫ ଶଶܫ

൨ ൦

߲ ௜ܰ

ݎ߲
߲ ௜ܰ

ݏ߲

൪ 						in	2D																						ሺB. 65ሻ 

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ௜ܰ

ݔ߲
߲ ௜ܰ

ݕ߲
߲ ௜ܰ

ݖ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ ሾ۸ሿିଵ

ۏ
ێ
ێ
ێ
ێ
ۍ
߲ ௜ܰ

ݎ߲
߲ ௜ܰ

ݏ߲
߲ ௜ܰ

ݐ߲ ے
ۑ
ۑ
ۑ
ۑ
ې

ൌ ൥
ଵଵܫ ଵଶܫ ଵଷܫ
ଶଵܫ ଶଶܫ ଶଷܫ
ଷଵܫ ଷଶܫ ଷଷܫ

൩

ۏ
ێ
ێ
ێ
ێ
ۍ
߲ ௜ܰ

ݎ߲
߲ ௜ܰ

ݏ߲
߲ ௜ܰ

ݐ߲ ے
ۑ
ۑ
ۑ
ۑ
ې

						in	3D																				ሺB. 66ሻ 

with the terms of the inverse of the Jacobian matrix denoted ܫ௜௝ for convenience. The 
equation a can be used to obtain the partial derivatives of the field variable with respect to 
the global coordinates, as required in discretizing a governing differential equation by the 
finite element method. 

d. Compute temperature ߠ and its derivatives with respect to the global coordinates: 

ߠ ൌ෍ ௜ܰሺݎ, ௜ߠሻݏ

௡

௜ୀଵ

,						in	2D																																											ሺB. 67ሻ 

ߠ ൌ෍ ௜ܰሺݎ, ,ݏ ௜ߠሻݐ

௡

௜ୀଵ

					in	3D																																										ሺB. 68ሻ 

and its derivatives ߲ݕ߲/ߠ߲ ,ݔ߲/ߠ and  ߲ݖ߲/ߠ with respect to global coordinates 

ߠ߲
ݔ߲

ൌ෍
߲ ௜ܰ

ݔ߲
ሺݎ, ௜ߠሻݏ

௡

௜ୀଵ

				ܽ݊݀			
ߠ߲
ݕ߲

ൌ෍
߲ ௜ܰ

ݕ߲
ሺݎ, ௜ߠሻݏ

௡

௜ୀଵ

								in	2D												ሺB. 69ሻ 

ߠ߲
ݔ߲

ൌ෍
߲ ௜ܰ

ݔ߲
ሺݎ, ,ݏ ௜ߠሻݐ

௡

௜ୀଵ

,			
ߠ߲
ݕ߲

ൌ෍
߲ ௜ܰ

ݕ߲
ሺݎ, ,ݏ ௜ߠሻݐ

௡

௜ୀଵ

		ܽ݊݀		
ߠ߲
ݖ߲

ൌ෍
߲ ௜ܰ

ݖ߲
ሺݎ, ,ݏ ௜ߠሻݐ

௡

௜ୀଵ

		in	3D			ሺB. 70ሻ 

e. Determine the temperature dependence of thermal conductivity ܓ 
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ܓ߲
ߠ߲

ൌ ൦

߲݇௫
ߠ߲

0

0
߲݇௬
ߠ߲

൪ 				in	2D																																												ሺB. 71ሻ 

ܓ߲
ߠ߲

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
߲݇௫
ߠ߲

0 0

0
߲݇௬
ߠ߲

0

0 0
߲݇௭
ߠ߲ ے

ۑ
ۑ
ۑ
ۑ
ې

				in	3D																																								ሺB. 72ሻ 

In case of isotropic thermal conductivity, we have ݇ ൌ ݇௫ ൌ ݇௬ ൌ ݇௭. 

f. Store strains ઽ, stresses ો, and other internal state variables in array SVARS 

g. Form stiffness matrix ۹ ൌ  at internal point contribution ࣂࣂ۹

The stiffness matrix in the user element subroutine correspond to 

ࣂࣂ۹ ൌ ࢉ۹ ൅ ࢑۹ ൅ ࢎ۹ ൅ .ሺB																																														ࢇ۹ 73ሻ 

with 

ࢉ۹ ൌ
1
Δݐ
න ܸ݀	ۼࢀۼܿߩ
௏೐

																																														ሺB. 74ሻ 

࢑۹ ൌ න ሺસۼሻࢀ	ܓ	સۼ	ܸ݀
௏೐

൅ න ሺસۼሻࢀ 	
ܓ߲
ߠ߲

	સߠ	ۼ		ܸ݀
௏೐

																					ሺB. 75ሻ 

ࢎ۹ ൌ න ൤
߲݄
ߠ߲

ሺߠ െ ଴ሻߠ ൅ ݄൨ۼࢀۼ	݀ܵ
ௌ೓
೐

																																ሺB. 76ሻ 

ࢇ۹ ൌ න ܵ݀	ۼࢀۼଷߠܣ4
ௌೝ
೐

																																														ሺB. 77ሻ 

The product ۼࢀۼ is defined by  

ۼࢀۼ ൌ ൦

ଵܰ

ଶܰ
⋮
௡ܰ

൪ ሾ ଵܰ	 ଶܰ	 ⋯ ௡ܰ	ሿ ൌ

ۏ
ێ
ێ
ێ
ۍ ଵܰ ଵܰ ଵܰ ଶܰ ଵܰ ଷܰ

ଶܰ ଵܰ

ଷܰ ଵܰ

ଶܰ ଶܰ

ଷܰ ଶܰ

ଶܰ ଷܰ

ଷܰ ଷܰ

⋯
ଵܰ ௡ܰ

ଶܰ ௡ܰ

ଷܰ ௡ܰ
⋮ ⋱ ⋮

௡ܰ ଵܰ ௡ܰ ଶܰ ௡ܰ ଷܰ ⋯ ௡ܰ ௡ܰے
ۑ
ۑ
ۑ
ې

												ሺB. 78ሻ 

The product ሺસۼሻࢀ	ܓ	સۼ	 is defined by  

ሺસۼሻࢀ	ܓ	સۼ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲
߲ ଶܰ

ݔ߲
߲ ଶܰ

ݕ߲
⋮

߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

൤
݇௫ 0
0 ݇௬

൨

ۏ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲

	

߲ ଶܰ

ݔ߲
߲ ଶܰ

ݕ߲

	 ⋯

߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲

	

ے
ۑ
ۑ
ې
						in	2D								ሺB. 79ሻ 
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ሺસۼሻࢀ	ܓ	સۼ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݖ߲
߲ ଶܰ

ݔ߲
߲ ଶܰ

ݕ߲
߲ ଶܰ

ݖ߲
⋮

߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݖ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

቎
݇௫ 0 0
0 ݇௬ 0
0 0 ݇௭

቏

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݖ߲

	

߲ ଶܰ

ݔ߲
߲ ଶܰ

ݕ߲
߲ ଶܰ

ݖ߲

	 ⋯

߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݖ߲

	

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

						in	3D						ሺB. 80ሻ 

The product ሺસۼሻࢀ 	
డܓ

డఏ
	સߠ	ۼ is defined by  

ሺસۼሻࢀ 	
ܓ߲
ߠ߲

	સߠ	ۼ	 ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲
߲ ଶܰ

ݔ߲
߲ ଶܰ

ݕ߲
⋮

߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

൦

߲݇௫
ߠ߲

0

0
߲݇௬
ߠ߲

൪

ۏ
ێ
ێ
ۍ
ߠ߲
ݔ߲
ߠ߲
ےݕ߲
ۑ
ۑ
ې
	ሾ ଵܰ	 ଶܰ	 ⋯ ௡ܰ	ሿ						in	2D						ሺB. 81ሻ 

ሺસۼሻࢀ 	
ܓ߲
ߠ߲

	સߠ	ۼ	 ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݖ߲
߲ ଶܰ

ݔ߲
߲ ଶܰ

ݕ߲
߲ ଶܰ

ݖ߲
⋮

߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݖ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
߲݇௫
ߠ߲

0 0

0
߲݇௬
ߠ߲

0

0 0
߲݇௭
ߠ߲ ے

ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ߠ߲
ݔ߲
ߠ߲
ݕ߲
ߠ߲
ےݖ߲
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	ሾ ଵܰ	 ଶܰ	 ⋯ ௡ܰ	ሿ						in	3D		ሺB. 82ሻ 

Where સߠ ൌ સۼ	ી is defined by  

	સߠ ൌ

ۏ
ێ
ێ
ۍ
ߠ߲
ݔ߲
ߠ߲
ےݕ߲
ۑ
ۑ
ې
ൌ

ۏ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲

	

߲ ଶܰ

ݔ߲
߲ ଶܰ

ݕ߲

	 ⋯

߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲

	

ے
ۑ
ۑ
ې
	൦

ଵߠ
ଶߠ
⋮
௡ߠ

൪ 						in	2D																			ሺB. 83ሻ 

	સߠ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ߠ߲
ݔ߲
ߠ߲
ݕ߲
ߠ߲
ےݖ߲
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
߲ ଶܰ

ݔ߲
߲ ଵܰ

ݕ߲
߲ ଶܰ

ݕ߲
߲ ଵܰ

ݖ߲
߲ ଶܰ

ݖ߲

	 ⋯

߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݖ߲

	

ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	൦

ଵߠ
ଶߠ
⋮
௡ߠ

൪ 						in	3D																			ሺB. 84ሻ 

Using the Gauss quadrature, the integration over the 2D element is approximated by 

ࢉ۹ ൌ
1
Δݐ
෍෍ܿߩ ௜ܹ ௝ܹܬሺݎ௜, ,௜ݎሺ்ۼ௝ሻݏ ,௜ݎሺۼ௝ሻݏ ௝ሻݏ

௡

௝ୀଵ

௠

௜ୀଵ

																						ሺB. 85ሻ 

࢑۹ ൌ෍෍ ௜ܹ ௝ܹܬ൫ݎ௜, ,௜ݎ൫ࢀሻۼ௝൯ሺસݏ ,௜ݎ൫ۼસ	ܓ௝൯ݏ ௝൯ݏ

௡

௝ୀଵ

௠

௜ୀଵ
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൅෍෍ ௜ܹ ௝ܹܬ൫ݎ௜, ,௜ݎ൫ࢀሻۼ௝൯ሺસݏ ௝൯ݏ
ܓ߲
ߠ߲

	સߠ൫ݎ௜, ,௜ݎ൫ۼ	௝൯ݏ ௝൯ݏ

௡

௝ୀଵ

௠

௜ୀଵ

									ሺB. 86ሻ 

ࢎ۹ ൌ෍ ௜ܹܬሺݎ௜ሻ ൤
߲݄
ߠ߲

ሺߠሺݎ௜ሻ െ ଴ሻߠ ൅ ݄൨்ۼሺݎ௜ሻۼሺݎ௜ሻ

௡

௝ୀଵ

					on	ܵ௛
௘													ሺB. 87ሻ 

ࢇ۹ ൌ෍ ௜ܹܬሺݎ௜ሻ4ܣሾߠሺݎ௜ሻሿଷ்ۼሺݎ௜ሻۼሺݎ௜ሻ

௡

௝ୀଵ

					on	ܵ௥௘																				ሺB. 88ሻ 

And over the 3D element 

ࢉ۹ ൌ
1
Δݐ
෍෍෍ܿߩ ௜ܹ ௝ܹ ௞ܹܬ൫ݎ௜, ,௝ݏ ,௜ݎ൫்ۼ௞൯ݐ ,௝ݏ ,௜ݎ൫ۼ௞൯ݐ ,௝ݏ ௞൯ݐ

௡

௞ୀଵ

௠

௝ୀଵ

௟

௜ୀଵ

						ሺB. 89ሻ 

ࢉ۹ ൌ෍෍෍ ௜ܹ ௝ܹ ௞ܹܬ൫ݎ௜, ,௝ݏ ,௜ݎ൫ࢀሻۼ௞൯ሺસݐ ,௝ݏ ,௜ݎ൫ۼસ	ܓ௞൯ݐ ,௝ݏ ௞൯ݐ

௡

௞ୀଵ

௠

௝ୀଵ

௟

௜ୀଵ

												 

൅෍෍෍ ௜ܹ ௝ܹ ௞ܹܬ൫ݎ௜, ,௝ݏ ,௜ݎ൫ࢀሻۼ௞൯ሺસݐ ,௝ݏ ௞൯ݐ
ܓ߲
ߠ߲

	સߠ൫ݎ௜, ,௝ݏ ,௜ݎ൫ۼ௞൯ݐ ,௝ݏ ௞൯ݐ

௡

௞ୀଵ

௠

௝ୀଵ

௟

௜ୀଵ

				ሺB. 90ሻ 

ࢎ۹ ൌ෍෍ ௜ܹ ௝ܹܬ൫ݎ௜, ௝൯ݏ ൤
߲݄
ߠ߲

൫ߠ൫ݎ௜, ௝൯ݏ െ ଴൯ߠ ൅ ݄൨்ۼ൫ݎ௜, ,௜ݎ൫ۼ௝൯ݏ ௝൯ݏ

௡

௝ୀଵ

௠

௜ୀଵ

					on	ܵ௛
௘				ሺB. 91ሻ 

ࢎ۹ ൌ෍෍ ௜ܹ ௝ܹܬ൫ݎ௜, ,௜ݎ൫்ۼ௜ሻሿଷݎሺߠሾܣ௝൯4ݏ ,௜ݎ൫ۼ௝൯ݏ ௝൯ݏ

௡

௝ୀଵ

௠

௜ୀଵ

					on	ܵ௥௘										ሺB. 92ሻ 

where ௜ܹ, ௝ܹ and ௞ܹ are Gaussian weighting factors, ݈, m, and ݊ are the number of 

sampling points or Gauss points, and ܬ ൌ  .ࡶ is the determinant of the Jacobian |ࡶ	|

h. Form right-hand side residual ۶ሺીሻ at internal point contribution, which is defined by 

۶ሺીሻ ൌ ࢉ܀ ൅ ࢑܀ ൅ ࢘܀ ൅ ࢗ܀ ൅ ࢎ܀ ൅ .ሺB																														ࢇ܀ 93ሻ 

۶ሺીሻ ൌ
1
Δݐ
නࢀۼ	ܿߩሾߠ௧ା୼௧ െ ௧ሿܸ݀ߠ
௏

൅ නሺસۼሻࢀ	ܓ	સߠ		ܸ݀
௏

െ නݎࢀۼ	ܸ݀
௏

െ න ܵ݀ݍࢀۼ
ௌ೜

										 

൅න ߠሺ݄ࢀۼ െ 	଴ሻ݀ܵߠ
ௌ೎

൅ න ߠሾሺܣࢀۼ െ ௭ሻସߠ െ ሺߠ଴ െ ௭ሻସሿ݀ܵߠ
ௌೝ

													ሺB. 94ሻ 

Using the Gauss quadrature, the integration of ࢉ܀ over the element is approximated by 

ࢉ܀ ൌ
1
Δݐ
෍෍ܿߩ ௜ܹ ௝ܹࢀۼܬ	ሺݎ௜, ௧ା୼௧ߠ௝ሻሾݏ െ ,௜ݎ௧ሿሺߠ ௝ሻݏ

௡

௝ୀଵ

௠

௜ୀଵ

					in	2D																	ሺB. 95ሻ 

ࢉ܀ ൌ
1
Δݐ
෍෍෍ܿߩ ௜ܹ ௝ܹ ௞ܹܬ൫ݎ௜, ,௝ݏ ,௜ݎሺࢀሻۼ௞൯ሺસݐ ௧ା୼௧ߠ௝,௧ೖሻሾݏ െ ,௜ݎ௧ሿሺߠ ௝,௧ೖሻݏ

௡

௞ୀଵ

௠

௝ୀଵ

௟

௜ୀଵ

				in	3D				ሺB. 96ሻ 
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The product ሺસۼሻࢀ	ܓ	સߠ in the second integral term ࢑܀ is defined by 

ሺસۼሻࢀ	ܓ	સߠ	 ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲
߲ ଶܰ

ݔ߲
߲ ଶܰ

ݕ߲
⋮

߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

൤
݇௫ 0
0 ݇௬

൨

ۏ
ێ
ێ
ۍ
ߠ߲
ݔ߲
ߠ߲
ےݕ߲
ۑ
ۑ
ې
				in	2D																					ሺB. 97ሻ 

ሺસۼሻࢀ	ܓ	સߠ	 ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݖ߲
߲ ଶܰ

ݔ߲
߲ ଶܰ

ݕ߲
߲ ଶܰ

ݖ߲
⋮

߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݖ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

቎
݇௫ 0 0
0 ݇௬ 0
0 0 ݇௭

቏

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ߠ߲
ݔ߲
ߠ߲
ݕ߲
ߠ߲
ےݖ߲
ۑ
ۑ
ۑ
ۑ
ۑ
ې

				in	3D											ሺB. 98ሻ 

Using the Gauss quadrature, the integration of ࢑܀ over the element is approximated by 

࢑܀ ൌ
1
Δݐ
෍෍ܿߩ ௜ܹ ௝ܹܬሾߠ௧ା୼௧ െ ,௜ݎሺ	ࢀۼ௧ሿߠ ,௜ݎሺߠસ	ܓ௝ሻݏ ௝ሻݏ

௡

௝ୀଵ

௠

௜ୀଵ

					in	2D										ሺB. 99ሻ 

࢑܀ ൌ෍෍෍ ௜ܹ ௝ܹ ௞ܹܬ൫ݎ௜, ,௝ݏ ௧ା୼௧ߠ௞൯ሾݐ െ ,௜ݎሺࢀሻۼ௧ሿሺસߠ ,௜ݎሺߠસ	ܓ௝,௧ೖሻݏ ௝,௧ೖሻݏ

௡

௞ୀଵ

௠

௝ୀଵ

௟

௜ୀଵ

			in	3D				ሺB. 100ሻ 

 

where ۼ are the shape functions for the edge in 2D and the surface in 3D to which the 
surface forces ܜ are applied. Therefore coordinates of Gauss points must be redefined. 

ࢉ܀ ൌ
1
Δݐ
෍෍ܿߩ ௜ܹ ௝ܹܬሾߠ௧ା୼௧ െ ,௜ݎሺ	ࢀۼ௧ሿߠ ,௜ݎሺߠસ	ܓ௝ሻݏ ௝ሻݏ

௡

௝ୀଵ

௠

௜ୀଵ

					in	2D							ሺB. 101ሻ 

ࢉ܀ ൌ෍෍෍ ௜ܹ ௝ܹ ௞ܹܬ൫ݎ௜, ,௝ݏ ௧ା୼௧ߠ௞൯ሾݐ െ ,௜ݎሺࢀሻۼ௧ሿሺસߠ ,௜ݎሺߠસ	ܓ௝,௧ೖሻݏ ௝,௧ೖሻݏ

௡

௞ୀଵ

௠

௝ୀଵ

௟

௜ୀଵ

			in	3D					ሺB. 102ሻ 

Using the Gauss quadrature, the integration over the element of the three other integral 
terms is approximated by 

ࢗ܀ ൌ න ܵ݀ݍࢀۼ
ௌ೜
೐

ൌ෍ ௜ܹܬሺݎ௜ሻ்ۼሺݎ௜ሻݍሺݎ௜ሻ

௡

௜ୀଵ

					in	2D																ሺB. 103ሻ 

ࢗ܀ ൌ න ܵ݀ݍࢀۼ
ௌ೜
೐

ൌ෍෍ ௜ܹ ௝ܹܬ൫ݎ௜, ,௜ݎ൫்ۼ௝൯ݏ ,௜ݎ൫ݍ௝൯ݏ ௝൯ݏ

௡

௝ୀଵ

௠

௜ୀଵ

				in	3D					ሺB. 104ሻ 

ࢗ܀ ൌ න ߠሺ݄ࢀۼ െ 	଴ሻ݀ܵߠ
ௌ೓
೐

ൌ෍ ௜ܹܬሺݎ௜ሻ்ۼሺݎ௜ሻ݄ሺߠ െ ௜ሻݎ଴ሻሺߠ

௡

௜ୀଵ

					in	2D					ሺB. 105ሻ 
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ࢗ܀ ൌ න ߠሺ݄ࢀۼ െ ଴ሻ݀ܵߠ
ௌ೓
೐

ൌ෍෍ ௜ܹ ௝ܹܬ൫ݎ௜, ,௜ݎ൫்ۼ௝൯ݏ ߠ௝൯݄ሺݏ െ ,௜ݎ଴ሻ൫ߠ ௝൯ݏ

௡

௝ୀଵ

௠

௜ୀଵ

				in	3D			ሺB. 106ሻ 

ࢗ܀ ൌ න ߠሾሺܣࢀۼ െ ௭ሻସߠ െ ሺߠ଴ െ ௭ሻସሿ݀ܵߠ
ௌೝ
೐

ൌ෍ ௜ܹܬሺݎ௜ሻ்ۼሺݎ௜ሻܣሾሺߠ െ ௭ሻସߠ െ ሺߠ଴ െ ௜ሻݎ௭ሻସሿሺߠ

௡

௜ୀଵ

					in	2D						ሺB. 107ሻ 

ࢗ܀												 ൌ න ߠሾሺܣࢀۼ െ ௭ሻସߠ െ ሺߠ଴ െ ௭ሻସሿ݀ܵߠ
ௌೝ
೐

		

ൌ ෍෍ ௜ܹ ௝ܹܬ൫ݎ௜, ,௜ݎ൫்ۼ௝൯ݏ ߠሾሺܣ௝൯ݏ െ ௭ሻସߠ െ ሺߠ଴ െ ,௜ݎ௭ሻସሿ൫ߠ ௝൯ݏ

௡

௝ୀଵ

௠

௜ୀଵ

	in	3D					ሺB. 108ሻ 

 

In case of (steady state or transient) fully coupled temperature displacement analysis 
(LFLAGS(1)=71,72,73), if the heat generation is caused by mechanical working dependent 
on displacement ܝ, the following  Jacobian term must be determined 

۹ીܝ ൌ න ࢀۼ 	
ݎ߲
߲ઽ
	۰		ܸ݀

௏೐
																																														ሺB. 109ሻ 

with the product ࢀۼ 	
డ௥

డઽ
	۰ defined by  

ࢀۼ 	
ݎ߲
߲ઽ
	۰	 ൌ ൦

ଵܰ

ଶܰ
⋮
௡ܰ

൪ ൤
ݎ߲
ଵଵߝ߲

	
ݎ߲
ଶଶߝ߲

	
ݎ߲
ଵଶߝ߲

൨

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
0

0
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݔ߲

⋯

߲ ௡ܰ

ݔ߲
0

0
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݔ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

				in	2D									ሺB. 110ሻ 

ࢀۼ			 ݎ߲
߲ઽ
۰ ൌ ൦

ଵܰ

ଶܰ
⋮
௡ܰ

൪ ൤
ݎ߲
ଵଵߝ߲

ݎ߲
ଶଶߝ߲

ݎ߲
ଷଷߝ߲

ݎ߲
ଵଶߝ߲

ݎ߲
ଵଷߝ߲

ݎ߲
ଶଷߝ߲

൨

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
0 0

0
߲ ଵܰ

ݕ߲
0

0 0
߲ ଵܰ

ݖ߲
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݔ߲
0

߲ ଵܰ

ݖ߲
0

߲ ଵܰ

ݔ߲

0
߲ ଵܰ

ݖ߲
߲ ଵܰ

ݕ߲

⋯

߲ ௡ܰ

ݔ߲
0 0

0
߲ ௡ܰ

ݕ߲
0

0 0
߲ ௡ܰ

ݖ߲
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݔ߲
0

߲ ௡ܰ

ݖ߲
0

߲ ௡ܰ

ݔ߲

0
߲ ௡ܰ

ݖ߲
߲ ௡ܰ

ݕ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

in	3D 

ሺB. 111ሻ 
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In case of (steady state or transient) fully coupled thermal-diffusion analysis 
(LFLAGS(1)=71,72,73), if the conductivity is dependent on concentration variables ߶௜, 
the following Jacobian term must be determined 

۹ી૖࢏ ൌ න ሺસۼሻࢀ 	
ܓ߲
߲߶௜

	સߠ	ۼ		ܸ݀
௏೐

																																					ሺB. 112ሻ	 

with the product ሺસۼሻࢀ 	
డܓ

డథ೔
	સߠ	ۼ defined by  

ሺસۼሻࢀ 	
ܓ߲
߲߶௜

	સߠ	ۼ	 ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲
߲ ଶܰ

ݔ߲
߲ ଶܰ

ݕ߲
⋮

߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ۍ
߲݇௫
߲߶௜

0

0
߲݇௬
߲߶௜ے

ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ۍ
ߠ߲
ݔ߲
ߠ߲
ےݕ߲
ۑ
ۑ
ې
	ሾ ଵܰ	 ଶܰ	 ⋯ ௡ܰ	ሿ				in	2D				ሺB. 113ሻ 

									ሺસۼሻࢀ 	
ܓ߲
߲߶௜

	સߠ	ۼ ൌ 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲ ଵܰ

ݔ߲
߲ ଵܰ

ݕ߲
߲ ଵܰ

ݖ߲
߲ ଶܰ

ݔ߲
߲ ଶܰ

ݕ߲
߲ ଶܰ

ݖ߲
⋮

߲ ௡ܰ

ݔ߲
߲ ௡ܰ

ݕ߲
߲ ௡ܰ

ݖ߲ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
߲݇௫
߲߶௜

0 0

0
߲݇௬
߲߶௜

0

0 0
߲݇௭
߲߶௜ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ߠ߲
ݔ߲
ߠ߲
ݕ߲
ߠ߲
ےݖ߲
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	ሾ ଵܰ	 ଶܰ	 ⋯ ௡ܰ	ሿ				in	3D							ሺB. 114ሻ 

Using the Gauss quadrature, the integration over the element is approximated by 

۹ી૖࢏ ൌ෍෍ ௜ܹ ௝ܹܬሺݎ௜, ,௜ݎሺࢀሻۼ௝ሻሺસݏ ௝ሻݏ
ܓ߲
߲߶௜

ሺݎ௜, ,௜ݎሺۼ௝ሻݏ ௝ሻݏ

௡

௝ୀଵ

௠

௜ୀଵ

					in	2D											ሺB. 115ሻ 

۹ી૖࢏ ൌ෍෍෍ ௜ܹ ௝ܹ ௞ܹܬ൫ݎ௜, ,௝ݏ ,௜ݎ൫ࢀሻۼ௞൯ሺસݐ ,௝ݏ ௞൯ݐ
ܓ߲
߲߶௜

൫ݎ௜, ,௝ݏ ,௜ݎ൫ۼ௞൯ݐ ,௝ݏ ௞൯ݐ

௡

௞ୀଵ

௠

௜ୀଵ

௟

௜ୀଵ

		in	3D			ሺB. 116ሻ 

C. Diffusion 

 The discretization of diffusion equations is similar to that of heat transfer, therefore the same steps are 
repeated to solve the diffusion equations. The diffusion equations ۶ሺ૖ሻ represents a set of several diffusion 
equations to find the vector of concentration variables ૖. For example, if ૖ is a vector of three different 
concentration variables ߶ଵ, ߶ଶ and ߶ଷ, it is discretized by 
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૖ ൌ ࢋ૖ۼ	 ൌ ቎
߶ଵ

߶ଶ

߶ଷ
቏ ൌ ൥

ଵܰ 0 0
0 ଵܰ 0
0 0 ଵܰ

ଶܰ 0 0
0 ଶܰ 0
0 0 ଶܰ

⋯
௡ܰ 0 0
0 ௡ܰ 0
0 0 ௡ܰ

൩

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ଵ߶ۍ

ଵ

߶ଵ
ଶ

߶ଵ
ଷ

߶ଶ
ଵ

߶ଶ
ଶ

߶ଶ
ଷ

⋮
߶௡ଵ

߶௡ଶ

߶௡ଷے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

				ሺB. 117ሻ 

Since the diffusion equations are going to be implemented sequentially, the vector ૖ is discretized by 

૖ ൌ ࢋ૖ۼ	 ൌ ቎
߶ଵ

߶ଶ

߶ଷ
቏ ൌ ൥

ଵܰ
0
0

ଶܰ
0
0

⋯
⋯
⋯

௡ܰ
0
0

0
ଵܰ
0

0
ଶܰ
0

⋯
⋯
⋯

0
௡ܰ
0

⋯
0
0
ଵܰ

0
0
ଶܰ

⋯
⋯
⋯

0
0
௡ܰ

൩

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ଵ߶ۍ

ଵ

߶ଶ
ଵ

⋮
߶௡ଵ

߶ଵ
ଶ

߶ଶ
ଶ

⋮
߶௡ଶ

߶ଵ
ଷ

߶ଶ
ଷ

⋮
߶௡ଷے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ሺB. 118ሻ 

The same procedure is applied for each concentration variable in diffusion as in that of Heat Transfer’s 
section (Appendix B section B). 

 

D. Global Stiffness Matrix and Load Vector 

The discretization of diffusion equations is similar to that of heat transfer, therefore the same steps are 
repeated to solve the diffusion equations. The diffusion equations ۶ሺ૖ሻ represents a set of several diffusion 
equations to find the vector of concentration variables ૖. For example, if ૖ is a vector of three different 
concentration variables ߶ଵ, ߶ଶ and ߶ଷ, it is discretized by 

UEL Conventions 

The solution variables (displacement, velocity, etc.) are arranged on a node/degree of freedom basis. 

•  The degrees of freedom of the first node are first, followed by the degrees of freedom of the 
second node, etc. 

–  Consider a planar beam that uses degrees of freedom 1, 2, and 6 at its first and second 
node and degrees of freedom 1 and 2 at its third (middle) node. The ordering is: 

 
Element variable  1 2  3  4  5  6  7   8 
Node  1 1 1 2 2 2 3 3 
Degree of freedom 1 2 6 1 2 6 1 2 
 

•  The flux vector and Jacobian matrix must be ordered in the same way. 
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Therefore the element Jacobian stiffness matrix ۹ ൌ AMATRX the flux vector ۿ ൌ RHS in the system to 
solve 

۹	 ൝
௞ାଵܝߜ
ી௞ାଵߜ
૖௞ାଵߜ

ൡ ൌ ۿ							with						ۿ ൌ ൝
െ۵௧ା୼௧

െ۶௧ା୼௧

െ۴௧ା୼௧
ൡ 		and			۹ ൌ ቎

ܝܝ۹ ીܝ۹ ૖ܝ۹

۹ીܝ ۹ીી ۹ી૖

0 ۹૖ી ۹૖૖

቏									ሺB. 119ሻ 

must be rearranged at the end of the UEL subroutine according to the UEL convention in Abaqus. 

After assembling the stress equilibrium equations, the heat transfer equations and the diffusion equations, 
the elemental Jacobian matrix is 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
௨௨ܭۍ

ଵ௫ଵ௫	ܭ௨௨
ଵ௫ଵ௬	ܭ௨௨ଵ௫ଶ௫ ௨௨ܭ	⋯

ଵ௫௡௬

௨௨ܭ
ଵ௬ଵ௫	ܭ௨௨

ଵ௬ଵ௬	ܭ௨௨
ଵ௬ଶ௫ ௨௨ܭ	⋯

ଵ௬௡௬

௨௨ܭ	௨௨ଶ௫ଵ௫ܭ
ଶ௫ଵ௬	ܭ௨௨ଶ௫ଶ௫ ௨௨ܭ	⋯

ଶ௫௡௬

⋮
௨௨ܭ	௨௨௡௫ଵ௫ܭ

௡௫ଵ௬	ܭ௨௨௡௫ଶ௫ ௨௨ܭ	⋯
௡௫௡௬

௨ఏܭ
ଵ௫ଵ	ܭ௨ఏ

ଵ௫ଶ ௨ఏܭ	⋯	
ଵ௫௡

௨ఏܭ
ଵ௬ଵ	ܭ௨ఏ

ଵ௬ଶ ௨ఏܭ	⋯	
ଵ௬௡

௨ఏܭ
ଶ௫ଵ	ܭ௨ఏ

ଶ௫ଶ ௨ఏܭ	⋯	
ଶ௫௡

⋮
௨ఏܭ
ଵ௫ଵ	ܭ௨ఏ

ଵ௫ଶ ௨ఏܭ	⋯	
ଵ௫௡

௨థܭ
ଵ௫ଵ	ܭ௨థ

ଵ௫ଶ ௨థܭ	⋯	
ଵ௫௡

௨థܭ
ଵ௬ଵ	ܭ௨థ

ଵ௬ଶ ௨థܭ	⋯	
ଵ௬௡

௨థܭ
ଶ௫ଵ	ܭ௨థ

ଶ௫ଶ ௨థܭ	⋯	
ଶ௫௡

⋮
௨థܭ
ଵ௫ଵ	ܭ௨థ

ଵ௫ଶ ௨థܭ	⋯	
ଵ௫௡

ఏ௨ܭ
ଵଵ௫			ܭఏథ

ଵଵ௬	ܭఏ௨
ଵଶ௫ ఏ௨ܭ		⋯				

ଵ௡௬

ఏ௨ܭ
ଶଵ௫			ܭఏథ

ଶଵ௬	ܭఏ௨
ଶଶ௫ ఏ௨ܭ		⋯				

ଶ௡௬

⋮
ఏ௨ܭ
௡ଵ௫			ܭఏథ

௡ଵ௬	ܭఏ௨
௡ଵ௫ ఏ௨ܭ		⋯				

௡௡௬

ఏఏܭ
ଵଵ			ܭఏఏ

ଵଶ ఏఏܭ		⋯			
ଵ௡

ఏఏܭ
ଶଵ			ܭఏఏ

ଶଶ ఏఏܭ		⋯			
ଶ௡

⋮
ఏఏܭ
௡ଵ			ܭఏఏ

௡ଶ ఏఏܭ		⋯			
௡௡

ఏథܭ
ଵଵ ఏథܭ			

ଵଶ ఏథܭ		⋯			
ଵ௡

ఏఏܭ
ଶଵ			ܭఏథ

ଶଶ ఏథܭ		⋯			
ଶ௡

⋮
ఏఏܭ
௡ଵ			ܭఏథ

௡ଶ ఏథܭ		⋯			
௡௡

0

థఏܭ
ଵଵ థఏܭ			

ଵଶ థఏܭ		⋯			
ଵ௡

థఏܭ
ଶଵ థఏܭ			

ଶଶ థఏܭ		⋯			
ଶ௡

⋮
థఏܭ
௡ଵ			ܭథఏ

௡ଶ థఏܭ		⋯			
௡௡

థథܭ
ଵଵ థథܭ			

ଵଶ థథܭ		⋯			
ଵ௡

థఏܭ
ଶଵ థథܭ			

ଶଶ థథܭ		⋯			
ଶ௡

⋮
థఏܭ
௡ଵ			ܭథథ

௡ଶ థథܭ		⋯			
௡௡
ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	

ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۓ
௫ଵݑ

௫ଵݑ

௫ଶݑ

⋮
௫௡ݑ

ଵߠ

ଶߠ

⋮
௡ߠ

߶ଵ

߶ଶ

⋮
߶௡ۙ

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۗ

ൌ

ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۓ
െܩ௫ଵ

െܩ௫ଵ

െܩ௫ଶ

⋮
െܩ௫௡

െܪଵ

െܪଶ

⋮
െܪ௡

െܨଵ

െܨଶ

⋮
െܨ௡ۙ

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۗ

 

After a first rearrangement of the flux vector, we have 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ௨௨ܭ

ଵ௫ଵ௫	ܭ௨௨
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After a second rearrangement of the displacement vector, we obtain 
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